Spaces:
Sleeping
Sleeping
Delete appStore/adapmit.py
Browse files- appStore/adapmit.py +0 -174
appStore/adapmit.py
DELETED
|
@@ -1,174 +0,0 @@
|
|
| 1 |
-
# set path
|
| 2 |
-
import glob, os, sys
|
| 3 |
-
sys.path.append('../utils')
|
| 4 |
-
|
| 5 |
-
#import needed libraries
|
| 6 |
-
import seaborn as sns
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
import numpy as np
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import streamlit as st
|
| 11 |
-
from utils.adapmit_classifier import load_adapmitClassifier,adapmit_classification
|
| 12 |
-
# from utils.keyword_extraction import textrank
|
| 13 |
-
import logging
|
| 14 |
-
logger = logging.getLogger(__name__)
|
| 15 |
-
from utils.config import get_classifier_params
|
| 16 |
-
from utils.preprocessing import paraLengthCheck
|
| 17 |
-
from io import BytesIO
|
| 18 |
-
import xlsxwriter
|
| 19 |
-
import plotly.express as px
|
| 20 |
-
|
| 21 |
-
# Declare all the necessary variables
|
| 22 |
-
classifier_identifier = 'adapmit'
|
| 23 |
-
params = get_classifier_params(classifier_identifier)
|
| 24 |
-
|
| 25 |
-
@st.cache_data
|
| 26 |
-
def to_excel(df):
|
| 27 |
-
len_df = len(df)
|
| 28 |
-
output = BytesIO()
|
| 29 |
-
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
| 30 |
-
df.to_excel(writer, index=False, sheet_name='Sheet1')
|
| 31 |
-
workbook = writer.book
|
| 32 |
-
worksheet = writer.sheets['Sheet1']
|
| 33 |
-
worksheet.data_validation('E2:E{}'.format(len_df),
|
| 34 |
-
{'validate': 'list',
|
| 35 |
-
'source': ['No', 'Yes', 'Discard']})
|
| 36 |
-
worksheet.data_validation('F2:F{}'.format(len_df),
|
| 37 |
-
{'validate': 'list',
|
| 38 |
-
'source': ['No', 'Yes', 'Discard']})
|
| 39 |
-
worksheet.data_validation('G2:G{}'.format(len_df),
|
| 40 |
-
{'validate': 'list',
|
| 41 |
-
'source': ['No', 'Yes', 'Discard']})
|
| 42 |
-
writer.save()
|
| 43 |
-
processed_data = output.getvalue()
|
| 44 |
-
return processed_data
|
| 45 |
-
|
| 46 |
-
def app():
|
| 47 |
-
|
| 48 |
-
### Main app code ###
|
| 49 |
-
with st.container():
|
| 50 |
-
|
| 51 |
-
if 'key1' in st.session_state:
|
| 52 |
-
df = st.session_state.key1
|
| 53 |
-
|
| 54 |
-
classifier = load_adapmitClassifier(classifier_name=params['model_name'])
|
| 55 |
-
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
| 56 |
-
if sum(df['Target Label'] == 'TARGET') > 100:
|
| 57 |
-
warning_msg = ": This might take sometime, please sit back and relax."
|
| 58 |
-
else:
|
| 59 |
-
warning_msg = ""
|
| 60 |
-
|
| 61 |
-
df = adapmit_classification(haystack_doc=df,
|
| 62 |
-
threshold= params['threshold'])
|
| 63 |
-
|
| 64 |
-
st.session_state.key1 = df
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# threshold= params['threshold']
|
| 71 |
-
# truth_df = df.drop(['text'],axis=1)
|
| 72 |
-
# truth_df = truth_df.astype(float) >= threshold
|
| 73 |
-
# truth_df = truth_df.astype(str)
|
| 74 |
-
# categories = list(truth_df.columns)
|
| 75 |
-
|
| 76 |
-
# placeholder = {}
|
| 77 |
-
# for val in categories:
|
| 78 |
-
# placeholder[val] = dict(truth_df[val].value_counts())
|
| 79 |
-
# count_df = pd.DataFrame.from_dict(placeholder)
|
| 80 |
-
# count_df = count_df.T
|
| 81 |
-
# count_df = count_df.reset_index()
|
| 82 |
-
# # st.write(count_df)
|
| 83 |
-
# placeholder = []
|
| 84 |
-
# for i in range(len(count_df)):
|
| 85 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'Yes'])
|
| 86 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'No'])
|
| 87 |
-
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
| 88 |
-
# # st.write("Total Paragraphs: {}".format(len(df)))
|
| 89 |
-
# fig = px.bar(count_df, y='category', x='count',
|
| 90 |
-
# color='truth_value',orientation='h', height =200)
|
| 91 |
-
# c1, c2 = st.columns([1,1])
|
| 92 |
-
# with c1:
|
| 93 |
-
# st.plotly_chart(fig,use_container_width= True)
|
| 94 |
-
|
| 95 |
-
# truth_df['labels'] = truth_df.apply(lambda x: {i if x[i]=='True' else None for i in categories}, axis=1)
|
| 96 |
-
# truth_df['labels'] = truth_df.apply(lambda x: list(x['labels'] -{None}),axis=1)
|
| 97 |
-
# # st.write(truth_df)
|
| 98 |
-
# df = pd.concat([df,truth_df['labels']],axis=1)
|
| 99 |
-
# st.markdown("###### Top few 'Mitigation' related paragraph/text ######")
|
| 100 |
-
# df = df.sort_values(by = ['Mitigation'], ascending=False)
|
| 101 |
-
# for i in range(3):
|
| 102 |
-
# if df.iloc[i]['Mitigation'] >= 0.50:
|
| 103 |
-
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Mitigation']))
|
| 104 |
-
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
| 105 |
-
|
| 106 |
-
# st.markdown("###### Top few 'Adaptation' related paragraph/text ######")
|
| 107 |
-
# df = df.sort_values(by = ['Adaptation'], ascending=False)
|
| 108 |
-
# for i in range(3):
|
| 109 |
-
# if df.iloc[i]['Adaptation'] > 0.5:
|
| 110 |
-
# st.write('**Result {}** (Relevancy Score: {:.2f})'.format(i+1,df.iloc[i]['Adaptation']))
|
| 111 |
-
# st.write("\t Text: \t{}".format(df.iloc[i]['text'].replace("\n", " ")))
|
| 112 |
-
# # st.write(df[['text','labels']])
|
| 113 |
-
# df['Validation'] = 'No'
|
| 114 |
-
# df['Val-Mitigation'] = 'No'
|
| 115 |
-
# df['Val-Adaptation'] = 'No'
|
| 116 |
-
# df_xlsx = to_excel(df)
|
| 117 |
-
# st.download_button(label='📥 Download Current Result',
|
| 118 |
-
# data=df_xlsx ,
|
| 119 |
-
# file_name= 'file_adaptation-mitigation.xlsx')
|
| 120 |
-
# # st.session_state.key4 =
|
| 121 |
-
|
| 122 |
-
# # category =set(df.columns)
|
| 123 |
-
# # removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
| 124 |
-
# # category = list(category - removecols)
|
| 125 |
-
|
| 126 |
-
# else:
|
| 127 |
-
# st.info("🤔 No document found, please try to upload it at the sidebar!")
|
| 128 |
-
# logging.warning("Terminated as no document provided")
|
| 129 |
-
|
| 130 |
-
# # Creating truth value dataframe
|
| 131 |
-
# if 'key4' in st.session_state:
|
| 132 |
-
# if st.session_state.key4 is not None:
|
| 133 |
-
# df = st.session_state.key4
|
| 134 |
-
# st.markdown("###### Select the threshold for classifier ######")
|
| 135 |
-
# c4, c5 = st.columns([1,1])
|
| 136 |
-
|
| 137 |
-
# with c4:
|
| 138 |
-
# threshold = st.slider("Threshold", min_value=0.00, max_value=1.0,
|
| 139 |
-
# step=0.01, value=0.5,
|
| 140 |
-
# help = "Keep High Value if want refined result, low if dont want to miss anything" )
|
| 141 |
-
# category =set(df.columns)
|
| 142 |
-
# removecols = {'Validation','Val-Adaptation','Val-Mitigation','text'}
|
| 143 |
-
# category = list(category - removecols)
|
| 144 |
-
|
| 145 |
-
# placeholder = {}
|
| 146 |
-
# for val in category:
|
| 147 |
-
# temp = df[val].astype(float) > threshold
|
| 148 |
-
# temp = temp.astype(str)
|
| 149 |
-
# placeholder[val] = dict(temp.value_counts())
|
| 150 |
-
|
| 151 |
-
# count_df = pd.DataFrame.from_dict(placeholder)
|
| 152 |
-
# count_df = count_df.T
|
| 153 |
-
# count_df = count_df.reset_index()
|
| 154 |
-
# placeholder = []
|
| 155 |
-
# for i in range(len(count_df)):
|
| 156 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['False'][i],'False'])
|
| 157 |
-
# placeholder.append([count_df.iloc[i]['index'],count_df['True'][i],'True'])
|
| 158 |
-
|
| 159 |
-
# count_df = pd.DataFrame(placeholder, columns = ['category','count','truth_value'])
|
| 160 |
-
# fig = px.bar(count_df, x='category', y='count',
|
| 161 |
-
# color='truth_value',
|
| 162 |
-
# height=400)
|
| 163 |
-
# st.write("")
|
| 164 |
-
# st.plotly_chart(fig)
|
| 165 |
-
|
| 166 |
-
# df['Validation'] = 'No'
|
| 167 |
-
# df['Val-Mitigation'] = 'No'
|
| 168 |
-
# df['Val-Adaptation'] = 'No'
|
| 169 |
-
# df_xlsx = to_excel(df)
|
| 170 |
-
# st.download_button(label='📥 Download Current Result',
|
| 171 |
-
# data=df_xlsx ,
|
| 172 |
-
# file_name= 'file_adaptation-mitigation.xlsx')
|
| 173 |
-
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|