Spaces:
Sleeping
Sleeping
Delete utils/semantic_search.py
Browse files- utils/semantic_search.py +0 -582
utils/semantic_search.py
DELETED
|
@@ -1,582 +0,0 @@
|
|
| 1 |
-
from haystack.nodes import TransformersQueryClassifier, Docs2Answers
|
| 2 |
-
from haystack.nodes import EmbeddingRetriever, FARMReader
|
| 3 |
-
from haystack.nodes.base import BaseComponent
|
| 4 |
-
from haystack.document_stores import InMemoryDocumentStore
|
| 5 |
-
from markdown import markdown
|
| 6 |
-
from annotated_text import annotation
|
| 7 |
-
from haystack.schema import Document
|
| 8 |
-
from typing import List, Text, Union
|
| 9 |
-
from typing_extensions import Literal
|
| 10 |
-
from utils.preprocessing import processingpipeline
|
| 11 |
-
from utils.streamlitcheck import check_streamlit
|
| 12 |
-
from haystack.pipelines import Pipeline
|
| 13 |
-
import pandas as pd
|
| 14 |
-
import logging
|
| 15 |
-
try:
|
| 16 |
-
from termcolor import colored
|
| 17 |
-
except:
|
| 18 |
-
pass
|
| 19 |
-
try:
|
| 20 |
-
import streamlit as st
|
| 21 |
-
except ImportError:
|
| 22 |
-
logging.info("Streamlit not installed")
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@st.cache(allow_output_mutation=True)
|
| 26 |
-
def loadQueryClassifier():
|
| 27 |
-
"""
|
| 28 |
-
retuns the haystack query classifier model
|
| 29 |
-
model = shahrukhx01/bert-mini-finetune-question-detection
|
| 30 |
-
|
| 31 |
-
"""
|
| 32 |
-
query_classifier = TransformersQueryClassifier(model_name_or_path=
|
| 33 |
-
"shahrukhx01/bert-mini-finetune-question-detection")
|
| 34 |
-
return query_classifier
|
| 35 |
-
|
| 36 |
-
class QueryCheck(BaseComponent):
|
| 37 |
-
"""
|
| 38 |
-
Uses Query Classifier from Haystack, process the query based on query type.
|
| 39 |
-
Ability to determine the statements is not so good, therefore the chances
|
| 40 |
-
statement also get modified. Ex: "List water related issues" will be
|
| 41 |
-
identified by the model as keywords, and therefore it be processed as "what
|
| 42 |
-
are the 'list all water related issues' related issues and discussions?".
|
| 43 |
-
This is one shortcoming but is igonred for now, as semantic search will not
|
| 44 |
-
get affected a lot, by this. If you want to pass keywords list and want to
|
| 45 |
-
do batch processing use. run_batch. Example: if you want to find relevant
|
| 46 |
-
passages for water, food security, poverty then querylist = ["water", "food
|
| 47 |
-
security","poverty"] and then execute QueryCheck.run_batch(queries = querylist)
|
| 48 |
-
|
| 49 |
-
1. https://docs.haystack.deepset.ai/docs/query_classifier
|
| 50 |
-
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
outgoing_edges = 1
|
| 54 |
-
|
| 55 |
-
def run(self, query:str):
|
| 56 |
-
"""
|
| 57 |
-
mandatory method to use the custom node. Determines the query type, if
|
| 58 |
-
if the query is of type keyword/statement will modify it to make it more
|
| 59 |
-
useful for sentence transoformers.
|
| 60 |
-
|
| 61 |
-
Params
|
| 62 |
-
--------
|
| 63 |
-
query: query/statement/keywords in form of string
|
| 64 |
-
|
| 65 |
-
Return
|
| 66 |
-
------
|
| 67 |
-
output: dictionary, with key as identifier and value could be anything
|
| 68 |
-
we need to return. In this case the output contain key = 'query'.
|
| 69 |
-
|
| 70 |
-
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
| 71 |
-
|
| 72 |
-
"""
|
| 73 |
-
query_classifier = loadQueryClassifier()
|
| 74 |
-
result = query_classifier.run(query=query)
|
| 75 |
-
|
| 76 |
-
if result[1] == "output_1":
|
| 77 |
-
output = {"query":query,
|
| 78 |
-
"query_type": 'question/statement'}
|
| 79 |
-
else:
|
| 80 |
-
output = {"query": "what are the {} related issues and \
|
| 81 |
-
discussions?".format(query),
|
| 82 |
-
"query_type": 'statements/keyword'}
|
| 83 |
-
logging.info(output)
|
| 84 |
-
return output, "output_1"
|
| 85 |
-
|
| 86 |
-
def run_batch(self, queries:List[str]):
|
| 87 |
-
"""
|
| 88 |
-
running multiple queries in one go, howeevr need the queries to be passed
|
| 89 |
-
as list of string. Example: if you want to find relevant passages for
|
| 90 |
-
water, food security, poverty then querylist = ["water", "food security",
|
| 91 |
-
"poverty"] and then execute QueryCheck.run_batch(queries = querylist)
|
| 92 |
-
|
| 93 |
-
Params
|
| 94 |
-
--------
|
| 95 |
-
queries: queries/statements/keywords in form of string encapsulated
|
| 96 |
-
within List
|
| 97 |
-
|
| 98 |
-
Return
|
| 99 |
-
------
|
| 100 |
-
output: dictionary, with key as identifier and value could be anything
|
| 101 |
-
we need to return. In this case the output contain key = 'queries'.
|
| 102 |
-
|
| 103 |
-
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
| 104 |
-
"""
|
| 105 |
-
query_classifier = loadQueryClassifier()
|
| 106 |
-
query_list = []
|
| 107 |
-
for query in queries:
|
| 108 |
-
result = query_classifier.run(query=query)
|
| 109 |
-
if result[1] == "output_1":
|
| 110 |
-
query_list.append(query)
|
| 111 |
-
else:
|
| 112 |
-
query_list.append("what are the {} related issues and \
|
| 113 |
-
discussions?".format(query))
|
| 114 |
-
output = {'queries':query_list}
|
| 115 |
-
logging.info(output)
|
| 116 |
-
return output, "output_1"
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
@st.cache(allow_output_mutation=True)
|
| 120 |
-
def runSemanticPreprocessingPipeline(file_path:str, file_name:str,
|
| 121 |
-
split_by: Literal["sentence", "word"] = 'sentence',
|
| 122 |
-
split_length:int = 2, split_overlap:int = 0,
|
| 123 |
-
split_respect_sentence_boundary:bool = False,
|
| 124 |
-
remove_punc:bool = False)->List[Document]:
|
| 125 |
-
"""
|
| 126 |
-
creates the pipeline and runs the preprocessing pipeline.
|
| 127 |
-
|
| 128 |
-
Params
|
| 129 |
-
------------
|
| 130 |
-
|
| 131 |
-
file_name: filename, in case of streamlit application use
|
| 132 |
-
st.session_state['filename']
|
| 133 |
-
file_path: filepath, in case of streamlit application use
|
| 134 |
-
st.session_state['filepath']
|
| 135 |
-
split_by: document splitting strategy either as word or sentence
|
| 136 |
-
split_length: when synthetically creating the paragrpahs from document,
|
| 137 |
-
it defines the length of paragraph.
|
| 138 |
-
split_overlap: Number of words or sentences that overlap when creating the
|
| 139 |
-
paragraphs. This is done as one sentence or 'some words' make sense
|
| 140 |
-
when read in together with others. Therefore the overlap is used.
|
| 141 |
-
split_respect_sentence_boundary: Used when using 'word' strategy for
|
| 142 |
-
splititng of text.
|
| 143 |
-
remove_punc: to remove all Punctuation including ',' and '.' or not
|
| 144 |
-
|
| 145 |
-
Return
|
| 146 |
-
--------------
|
| 147 |
-
List[Document]: When preprocessing pipeline is run, the output dictionary
|
| 148 |
-
has four objects. For the Haysatck implementation of semantic search we,
|
| 149 |
-
need to use the List of Haystack Document, which can be fetched by
|
| 150 |
-
key = 'documents' on output.
|
| 151 |
-
|
| 152 |
-
"""
|
| 153 |
-
|
| 154 |
-
semantic_processing_pipeline = processingpipeline()
|
| 155 |
-
|
| 156 |
-
output_semantic_pre = semantic_processing_pipeline.run(file_paths = file_path,
|
| 157 |
-
params= {"FileConverter": {"file_path": file_path, \
|
| 158 |
-
"file_name": file_name},
|
| 159 |
-
"UdfPreProcessor": {"remove_punc": remove_punc, \
|
| 160 |
-
"split_by": split_by, \
|
| 161 |
-
"split_length":split_length,\
|
| 162 |
-
"split_overlap": split_overlap,
|
| 163 |
-
"split_respect_sentence_boundary":split_respect_sentence_boundary}})
|
| 164 |
-
|
| 165 |
-
return output_semantic_pre
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
|
| 169 |
-
allow_output_mutation=True)
|
| 170 |
-
def loadRetriever(embedding_model:Text=None, embedding_model_format:Text = None,
|
| 171 |
-
embedding_layer:int = None, retriever_top_k:int = 10,
|
| 172 |
-
max_seq_len:int=512, document_store:InMemoryDocumentStore=None):
|
| 173 |
-
"""
|
| 174 |
-
Returns the Retriever model based on params provided.
|
| 175 |
-
1. https://docs.haystack.deepset.ai/docs/retriever#embedding-retrieval-recommended
|
| 176 |
-
2. https://www.sbert.net/examples/applications/semantic-search/README.html
|
| 177 |
-
3. https://github.com/deepset-ai/haystack/blob/main/haystack/nodes/retriever/dense.py
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
Params
|
| 181 |
-
---------
|
| 182 |
-
embedding_model: Name of the model to be used for embedding. Check the links
|
| 183 |
-
provided in documentation
|
| 184 |
-
embedding_model_format: check the github link of Haystack provided in
|
| 185 |
-
documentation embedding_layer: check the github link of Haystack
|
| 186 |
-
provided in documentation retriever_top_k: Number of Top results to
|
| 187 |
-
be returned by
|
| 188 |
-
retriever max_seq_len: everymodel has max seq len it can handle, check in
|
| 189 |
-
model card. Needed to hanlde the edge cases.
|
| 190 |
-
document_store: InMemoryDocumentStore, write haystack Document list to
|
| 191 |
-
DocumentStore and pass the same to function call. Can be done using
|
| 192 |
-
createDocumentStore from utils.
|
| 193 |
-
|
| 194 |
-
Return
|
| 195 |
-
-------
|
| 196 |
-
retriever: embedding model
|
| 197 |
-
"""
|
| 198 |
-
logging.info("loading retriever")
|
| 199 |
-
if document_store is None:
|
| 200 |
-
logging.warning("Retriever initialization requires the DocumentStore")
|
| 201 |
-
return
|
| 202 |
-
|
| 203 |
-
retriever = EmbeddingRetriever(
|
| 204 |
-
embedding_model=embedding_model,top_k = retriever_top_k,
|
| 205 |
-
document_store = document_store,
|
| 206 |
-
emb_extraction_layer=embedding_layer, scale_score =True,
|
| 207 |
-
model_format=embedding_model_format, use_gpu = True,
|
| 208 |
-
max_seq_len = max_seq_len )
|
| 209 |
-
if check_streamlit:
|
| 210 |
-
st.session_state['retriever'] = retriever
|
| 211 |
-
return retriever
|
| 212 |
-
|
| 213 |
-
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
|
| 214 |
-
allow_output_mutation=True)
|
| 215 |
-
def createDocumentStore(documents:List[Document], similarity:str = 'dot_product',
|
| 216 |
-
embedding_dim:int = 768):
|
| 217 |
-
"""
|
| 218 |
-
Creates the InMemory Document Store from haystack list of Documents.
|
| 219 |
-
It is mandatory component for Retriever to work in Haystack frame work.
|
| 220 |
-
|
| 221 |
-
Params
|
| 222 |
-
-------
|
| 223 |
-
documents: List of haystack document. If using the preprocessing pipeline,
|
| 224 |
-
can be fetched key = 'documents; on output of preprocessing pipeline.
|
| 225 |
-
similarity: scoring function, can be either 'cosine' or 'dot_product'
|
| 226 |
-
embedding_dim: Document store has default value of embedding size = 768, and
|
| 227 |
-
update_embeddings method of Docstore cannot infer the embedding size of
|
| 228 |
-
retiever automatically, therefore set this value as per the model card.
|
| 229 |
-
|
| 230 |
-
Return
|
| 231 |
-
-------
|
| 232 |
-
document_store: InMemory Document Store object type.
|
| 233 |
-
|
| 234 |
-
"""
|
| 235 |
-
document_store = InMemoryDocumentStore(similarity = similarity,
|
| 236 |
-
embedding_dim = embedding_dim )
|
| 237 |
-
document_store.write_documents(documents)
|
| 238 |
-
|
| 239 |
-
return document_store
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},
|
| 243 |
-
allow_output_mutation=True)
|
| 244 |
-
def semanticSearchPipeline(documents:List[Document], embedding_model:Text = None,
|
| 245 |
-
embedding_model_format:Text = None,embedding_layer:int = None,
|
| 246 |
-
embedding_dim:int = 768,retriever_top_k:int = 10,
|
| 247 |
-
reader_model:str = None, reader_top_k:int = 10,
|
| 248 |
-
max_seq_len:int =512,useQueryCheck = True,
|
| 249 |
-
top_k_per_candidate:int = 1):
|
| 250 |
-
"""
|
| 251 |
-
creates the semantic search pipeline and document Store object from the
|
| 252 |
-
list of haystack documents. The top_k for the Reader and Retirever are kept
|
| 253 |
-
same, so that all the results returned by Retriever are used, however the
|
| 254 |
-
context is extracted by Reader for each retrieved result. The querycheck is
|
| 255 |
-
added as node to process the query. This pipeline is suited for keyword search,
|
| 256 |
-
and to some extent extractive QA purpose. The purpose of Reader is strictly to
|
| 257 |
-
highlight the context for retrieved result and not for QA, however as stated
|
| 258 |
-
it can work for QA too in limited sense.
|
| 259 |
-
There are 4 variants of pipeline it can return
|
| 260 |
-
1.QueryCheck > Retriever > Reader
|
| 261 |
-
2.Retriever > Reader
|
| 262 |
-
3.QueryCheck > Retriever > Docs2Answers : If reader is None,
|
| 263 |
-
then Doc2answer is used to keep the output of pipeline structurally same.
|
| 264 |
-
4.Retriever > Docs2Answers
|
| 265 |
-
|
| 266 |
-
Links
|
| 267 |
-
|
| 268 |
-
1. https://docs.haystack.deepset.ai/docs/retriever#embedding-retrieval-recommended
|
| 269 |
-
2. https://www.sbert.net/examples/applications/semantic-search/README.html
|
| 270 |
-
3. https://github.com/deepset-ai/haystack/blob/main/haystack/nodes/retriever/dense.py
|
| 271 |
-
4. https://docs.haystack.deepset.ai/docs/reader
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
Params
|
| 275 |
-
----------
|
| 276 |
-
documents: list of Haystack Documents, returned by preprocessig pipeline.
|
| 277 |
-
embedding_model: Name of the model to be used for embedding. Check the links
|
| 278 |
-
provided in documentation
|
| 279 |
-
embedding_model_format: check the github link of Haystack provided in
|
| 280 |
-
documentation
|
| 281 |
-
embedding_layer: check the github link of Haystack provided in documentation
|
| 282 |
-
embedding_dim: Document store has default value of embedding size = 768, and
|
| 283 |
-
update_embeddings method of Docstore cannot infer the embedding size of
|
| 284 |
-
retiever automatically, therefore set this value as per the model card.
|
| 285 |
-
retriever_top_k: Number of Top results to be returned by retriever
|
| 286 |
-
reader_model: Name of the model to be used for Reader node in hasyatck
|
| 287 |
-
Pipeline. Check the links provided in documentation
|
| 288 |
-
reader_top_k: Reader will use retrieved results to further find better matches.
|
| 289 |
-
As purpose here is to use reader to extract context, the value is
|
| 290 |
-
same as retriever_top_k.
|
| 291 |
-
max_seq_len:everymodel has max seq len it can handle, check in model card.
|
| 292 |
-
Needed to hanlde the edge cases
|
| 293 |
-
useQueryCheck: Whether to use the querycheck which modifies the query or not.
|
| 294 |
-
top_k_per_candidate:How many answers to extract for each candidate doc
|
| 295 |
-
that is coming from the retriever
|
| 296 |
-
|
| 297 |
-
Return
|
| 298 |
-
---------
|
| 299 |
-
semanticsearch_pipeline: Haystack Pipeline object, with all the necessary
|
| 300 |
-
nodes [QueryCheck, Retriever, Reader/Docs2Answer]. If reader is None,
|
| 301 |
-
then Doc2answer is used to keep the output of pipeline structurally
|
| 302 |
-
same.
|
| 303 |
-
|
| 304 |
-
document_store: As retriever can work only with Haystack Document Store, the
|
| 305 |
-
list of document returned by preprocessing pipeline are fed into to
|
| 306 |
-
get InMemmoryDocumentStore object type, with retriever updating the
|
| 307 |
-
embeddings of each paragraph in document store.
|
| 308 |
-
|
| 309 |
-
"""
|
| 310 |
-
document_store = createDocumentStore(documents=documents,
|
| 311 |
-
embedding_dim=embedding_dim)
|
| 312 |
-
retriever = loadRetriever(embedding_model = embedding_model,
|
| 313 |
-
embedding_model_format=embedding_model_format,
|
| 314 |
-
embedding_layer=embedding_layer,
|
| 315 |
-
retriever_top_k= retriever_top_k,
|
| 316 |
-
document_store = document_store,
|
| 317 |
-
max_seq_len=max_seq_len)
|
| 318 |
-
document_store.update_embeddings(retriever)
|
| 319 |
-
semantic_search_pipeline = Pipeline()
|
| 320 |
-
if useQueryCheck and reader_model:
|
| 321 |
-
querycheck = QueryCheck()
|
| 322 |
-
reader = FARMReader(model_name_or_path=reader_model,
|
| 323 |
-
top_k = reader_top_k, use_gpu=True,
|
| 324 |
-
top_k_per_candidate = top_k_per_candidate)
|
| 325 |
-
semantic_search_pipeline.add_node(component = querycheck,
|
| 326 |
-
name = "QueryCheck",inputs = ["Query"])
|
| 327 |
-
semantic_search_pipeline.add_node(component = retriever,
|
| 328 |
-
name = "EmbeddingRetriever",inputs = ["QueryCheck.output_1"])
|
| 329 |
-
semantic_search_pipeline.add_node(component = reader, name = "FARMReader",
|
| 330 |
-
inputs= ["EmbeddingRetriever"])
|
| 331 |
-
|
| 332 |
-
elif reader_model :
|
| 333 |
-
reader = FARMReader(model_name_or_path=reader_model,
|
| 334 |
-
top_k = reader_top_k, use_gpu=True,
|
| 335 |
-
top_k_per_candidate = top_k_per_candidate)
|
| 336 |
-
semantic_search_pipeline.add_node(component = retriever,
|
| 337 |
-
name = "EmbeddingRetriever",inputs = ["Query"])
|
| 338 |
-
semantic_search_pipeline.add_node(component = reader,
|
| 339 |
-
name = "FARMReader",inputs= ["EmbeddingRetriever"])
|
| 340 |
-
elif useQueryCheck and not reader_model:
|
| 341 |
-
querycheck = QueryCheck()
|
| 342 |
-
docs2answers = Docs2Answers()
|
| 343 |
-
semantic_search_pipeline.add_node(component = querycheck,
|
| 344 |
-
name = "QueryCheck",inputs = ["Query"])
|
| 345 |
-
semantic_search_pipeline.add_node(component = retriever,
|
| 346 |
-
name = "EmbeddingRetriever",inputs = ["QueryCheck.output_1"])
|
| 347 |
-
semantic_search_pipeline.add_node(component = docs2answers,
|
| 348 |
-
name = "Docs2Answers",inputs= ["EmbeddingRetriever"])
|
| 349 |
-
elif not useQueryCheck and not reader_model:
|
| 350 |
-
docs2answers = Docs2Answers()
|
| 351 |
-
semantic_search_pipeline.add_node(component = retriever,
|
| 352 |
-
name = "EmbeddingRetriever",inputs = ["Query"])
|
| 353 |
-
semantic_search_pipeline.add_node(component = docs2answers,
|
| 354 |
-
name = "Docs2Answers",inputs= ["EmbeddingRetriever"])
|
| 355 |
-
|
| 356 |
-
logging.info(semantic_search_pipeline.components)
|
| 357 |
-
return semantic_search_pipeline, document_store
|
| 358 |
-
|
| 359 |
-
def runSemanticPipeline(pipeline:Pipeline, queries:Union[list,str])->dict:
|
| 360 |
-
"""
|
| 361 |
-
will use the haystack run or run_batch based on if single query is passed
|
| 362 |
-
as string or multiple queries as List[str]
|
| 363 |
-
|
| 364 |
-
Params
|
| 365 |
-
-------
|
| 366 |
-
pipeline: haystack pipeline, this is same as returned by semanticSearchPipeline
|
| 367 |
-
from utils.semanticsearch
|
| 368 |
-
|
| 369 |
-
queries: Either a single query or list of queries.
|
| 370 |
-
|
| 371 |
-
Return
|
| 372 |
-
-------
|
| 373 |
-
results: Dict containing answers and documents as key and their respective
|
| 374 |
-
values
|
| 375 |
-
|
| 376 |
-
"""
|
| 377 |
-
|
| 378 |
-
if type(queries) == list:
|
| 379 |
-
results = pipeline.run_batch(queries=queries)
|
| 380 |
-
elif type(queries) == str:
|
| 381 |
-
results = pipeline.run(query=queries)
|
| 382 |
-
else:
|
| 383 |
-
logging.info("Please check the input type for the queries")
|
| 384 |
-
return
|
| 385 |
-
|
| 386 |
-
return results
|
| 387 |
-
|
| 388 |
-
def process_query_output(results:dict)->pd.DataFrame:
|
| 389 |
-
"""
|
| 390 |
-
Returns the dataframe with necessary information like including
|
| 391 |
-
['query','answer','answer_offset','context_offset','context','content',
|
| 392 |
-
'reader_score','retriever_score','id',]. This is designed for output given
|
| 393 |
-
by semantic search pipeline with single query and final node as reader.
|
| 394 |
-
The output of pipeline having Docs2Answers as final node or multiple queries
|
| 395 |
-
need to be handled separately. In these other cases, use process_semantic_output
|
| 396 |
-
from utils.semantic_search which uses this function internally to make one
|
| 397 |
-
combined dataframe.
|
| 398 |
-
|
| 399 |
-
Params
|
| 400 |
-
---------
|
| 401 |
-
results: this dictionary should have key,values with
|
| 402 |
-
keys = [query,answers,documents], however answers is optional.
|
| 403 |
-
in case of [Doc2Answers as final node], process_semantic_output
|
| 404 |
-
doesnt return answers thereby setting all values contained in
|
| 405 |
-
answers to 'None'
|
| 406 |
-
|
| 407 |
-
Return
|
| 408 |
-
--------
|
| 409 |
-
df: dataframe with all the columns mentioned in function description.
|
| 410 |
-
|
| 411 |
-
"""
|
| 412 |
-
query_text = results['query']
|
| 413 |
-
if 'answers' in results.keys():
|
| 414 |
-
answer_dict = {}
|
| 415 |
-
|
| 416 |
-
for answer in results['answers']:
|
| 417 |
-
answer_dict[answer.document_id] = answer.to_dict()
|
| 418 |
-
else:
|
| 419 |
-
answer_dict = {}
|
| 420 |
-
docs = results['documents']
|
| 421 |
-
df = pd.DataFrame(columns=['query','answer','answer_offset','context_offset',
|
| 422 |
-
'context','content','reader_score','retriever_score',
|
| 423 |
-
'id'])
|
| 424 |
-
for doc in docs:
|
| 425 |
-
row_list = {}
|
| 426 |
-
row_list['query'] = query_text
|
| 427 |
-
row_list['retriever_score'] = doc.score
|
| 428 |
-
row_list['id'] = doc.id
|
| 429 |
-
row_list['content'] = doc.content
|
| 430 |
-
if doc.id in answer_dict.keys():
|
| 431 |
-
row_list['answer'] = answer_dict[doc.id]['answer']
|
| 432 |
-
row_list['context'] = answer_dict[doc.id]['context']
|
| 433 |
-
row_list['reader_score'] = answer_dict[doc.id]['score']
|
| 434 |
-
answer_offset = answer_dict[doc.id]['offsets_in_document'][0]
|
| 435 |
-
row_list['answer_offset'] = [answer_offset['start'],answer_offset['end']]
|
| 436 |
-
start_idx = doc.content.find(row_list['context'])
|
| 437 |
-
end_idx = start_idx + len(row_list['context'])
|
| 438 |
-
row_list['context_offset'] = [start_idx, end_idx]
|
| 439 |
-
else:
|
| 440 |
-
row_list['answer'] = None
|
| 441 |
-
row_list['context'] = None
|
| 442 |
-
row_list['reader_score'] = None
|
| 443 |
-
row_list['answer_offset'] = None
|
| 444 |
-
row_list['context_offset'] = None
|
| 445 |
-
df_dictionary = pd.DataFrame([row_list])
|
| 446 |
-
df = pd.concat([df, df_dictionary], ignore_index=True)
|
| 447 |
-
|
| 448 |
-
return df
|
| 449 |
-
|
| 450 |
-
def process_semantic_output(results):
|
| 451 |
-
"""
|
| 452 |
-
Returns the dataframe with necessary information like including
|
| 453 |
-
['query','answer','answer_offset','context_offset','context','content',
|
| 454 |
-
'reader_score','retriever_score','id',]. Distingushes if its single query or
|
| 455 |
-
multi queries by reading the pipeline output dictionary keys.
|
| 456 |
-
Uses the process_query_output to get the dataframe for each query and create
|
| 457 |
-
one concataneted dataframe. In case of Docs2Answers as final node, deletes
|
| 458 |
-
the answers part. See documentations of process_query_output.
|
| 459 |
-
|
| 460 |
-
Params
|
| 461 |
-
---------
|
| 462 |
-
results: raw output of runSemanticPipeline.
|
| 463 |
-
|
| 464 |
-
Return
|
| 465 |
-
--------
|
| 466 |
-
df: dataframe with all the columns mentioned in function description.
|
| 467 |
-
|
| 468 |
-
"""
|
| 469 |
-
output = {}
|
| 470 |
-
if 'query' in results.keys():
|
| 471 |
-
output['query'] = results['query']
|
| 472 |
-
output['documents'] = results['documents']
|
| 473 |
-
if results['node_id'] == 'Docs2Answers':
|
| 474 |
-
pass
|
| 475 |
-
else:
|
| 476 |
-
output['answers'] = results['answers']
|
| 477 |
-
df = process_query_output(output)
|
| 478 |
-
return df
|
| 479 |
-
if 'queries' in results.keys():
|
| 480 |
-
df = pd.DataFrame(columns=['query','answer','answer_offset',
|
| 481 |
-
'context_offset','context','content',
|
| 482 |
-
'reader_score','retriever_score','id'])
|
| 483 |
-
for query,answers,documents in zip(results['queries'],
|
| 484 |
-
results['answers'],results['documents']):
|
| 485 |
-
output = {}
|
| 486 |
-
output['query'] = query
|
| 487 |
-
output['documents'] = documents
|
| 488 |
-
if results['node_id'] == 'Docs2Answers':
|
| 489 |
-
pass
|
| 490 |
-
else:
|
| 491 |
-
output['answers'] = answers
|
| 492 |
-
|
| 493 |
-
temp = process_query_output(output)
|
| 494 |
-
df = pd.concat([df, temp], ignore_index=True)
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
return df
|
| 498 |
-
|
| 499 |
-
def semanticsearchAnnotator(matches:List[List[int]], document:Text):
|
| 500 |
-
"""
|
| 501 |
-
Annotates the text in the document defined by list of [start index, end index]
|
| 502 |
-
Example: "How are you today", if document type is text, matches = [[0,3]]
|
| 503 |
-
will give answer = "How", however in case we used the spacy matcher then the
|
| 504 |
-
matches = [[0,3]] will give answer = "How are you". However if spacy is used
|
| 505 |
-
to find "How" then the matches = [[0,1]] for the string defined above.
|
| 506 |
-
|
| 507 |
-
"""
|
| 508 |
-
start = 0
|
| 509 |
-
annotated_text = ""
|
| 510 |
-
for match in matches:
|
| 511 |
-
start_idx = match[0]
|
| 512 |
-
end_idx = match[1]
|
| 513 |
-
if check_streamlit():
|
| 514 |
-
annotated_text = (annotated_text + document[start:start_idx]
|
| 515 |
-
+ str(annotation(body=document[start_idx:end_idx],
|
| 516 |
-
label="Context", background="#964448", color='#ffffff')))
|
| 517 |
-
else:
|
| 518 |
-
annotated_text = (annotated_text + document[start:start_idx]
|
| 519 |
-
+ colored(document[start_idx:end_idx],
|
| 520 |
-
"green", attrs = ['bold']))
|
| 521 |
-
start = end_idx
|
| 522 |
-
|
| 523 |
-
annotated_text = annotated_text + document[end_idx:]
|
| 524 |
-
|
| 525 |
-
if check_streamlit():
|
| 526 |
-
|
| 527 |
-
st.write(
|
| 528 |
-
markdown(annotated_text),
|
| 529 |
-
unsafe_allow_html=True,
|
| 530 |
-
)
|
| 531 |
-
else:
|
| 532 |
-
print(annotated_text)
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
def semantic_keywordsearch(query:Text,documents:List[Document],
|
| 536 |
-
embedding_model:Text,
|
| 537 |
-
embedding_model_format:Text,
|
| 538 |
-
embedding_layer:int, reader_model:str,
|
| 539 |
-
retriever_top_k:int = 10, reader_top_k:int = 10,
|
| 540 |
-
return_results:bool = False, embedding_dim:int = 768,
|
| 541 |
-
max_seq_len:int = 512,top_k_per_candidate:int =1,
|
| 542 |
-
sort_by:Literal["retriever", "reader"] = 'retriever'):
|
| 543 |
-
"""
|
| 544 |
-
Performs the Semantic search on the List of haystack documents which is
|
| 545 |
-
returned by preprocessing Pipeline.
|
| 546 |
-
|
| 547 |
-
Params
|
| 548 |
-
-------
|
| 549 |
-
query: Keywords that need to be searche in documents.
|
| 550 |
-
documents: List fo Haystack documents returned by preprocessing pipeline.
|
| 551 |
-
|
| 552 |
-
"""
|
| 553 |
-
semanticsearch_pipeline, doc_store = semanticSearchPipeline(documents = documents,
|
| 554 |
-
embedding_model= embedding_model,
|
| 555 |
-
embedding_layer= embedding_layer,
|
| 556 |
-
embedding_model_format= embedding_model_format,
|
| 557 |
-
reader_model= reader_model, retriever_top_k= retriever_top_k,
|
| 558 |
-
reader_top_k= reader_top_k, embedding_dim=embedding_dim,
|
| 559 |
-
max_seq_len=max_seq_len,
|
| 560 |
-
top_k_per_candidate=top_k_per_candidate)
|
| 561 |
-
|
| 562 |
-
raw_output = runSemanticPipeline(semanticsearch_pipeline,query)
|
| 563 |
-
results_df = process_semantic_output(raw_output)
|
| 564 |
-
if sort_by == 'retriever':
|
| 565 |
-
results_df = results_df.sort_values(by=['retriever_score'], ascending=False)
|
| 566 |
-
else:
|
| 567 |
-
results_df = results_df.sort_values(by=['reader_score'], ascending=False)
|
| 568 |
-
|
| 569 |
-
if return_results:
|
| 570 |
-
return results_df
|
| 571 |
-
else:
|
| 572 |
-
if check_streamlit:
|
| 573 |
-
st.markdown("##### Top few semantic search results #####")
|
| 574 |
-
else:
|
| 575 |
-
print("Top few semantic search results")
|
| 576 |
-
for i in range(len(results_df)):
|
| 577 |
-
if check_streamlit:
|
| 578 |
-
st.write("Result {}".format(i+1))
|
| 579 |
-
else:
|
| 580 |
-
print("Result {}".format(i+1))
|
| 581 |
-
semanticsearchAnnotator([results_df.loc[i]['context_offset']],
|
| 582 |
-
results_df.loc[i]['content'] )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|