upgrade to Gradio 4.14.0
Browse files- .gitignore +3 -1
- README.md +2 -2
- app.py +79 -65
- apps/benchmark.py +1 -1
- apps/infer.py +33 -13
- gradio_cached_examples/13/log.csv +0 -2
- gradio_cached_examples/25/log.csv +0 -6
- lib/common/imutils.py +1 -1
- lib/common/libmesh/triangle_hash.cpp +0 -0
- lib/common/libvoxelize/voxelize.c +0 -0
- lib/common/local_affine.py +2 -0
- lib/common/render.py +4 -3
- lib/dataset/TestDataset.py +1 -1
- lib/pymafx/utils/sample_mesh.py +0 -66
- output.log +1 -0
- requirements.txt +2 -2
.gitignore
CHANGED
|
@@ -17,4 +17,6 @@ dist
|
|
| 17 |
*egg-info
|
| 18 |
*.so
|
| 19 |
run.sh
|
| 20 |
-
*.log
|
|
|
|
|
|
|
|
|
| 17 |
*egg-info
|
| 18 |
*.so
|
| 19 |
run.sh
|
| 20 |
+
*.log
|
| 21 |
+
gradio_cached_examples
|
| 22 |
+
!output.log
|
README.md
CHANGED
|
@@ -5,10 +5,10 @@ emoji: 🤼
|
|
| 5 |
colorFrom: green
|
| 6 |
colorTo: pink
|
| 7 |
sdk: gradio
|
| 8 |
-
sdk_version:
|
| 9 |
app_file: app.py
|
| 10 |
pinned: true
|
| 11 |
-
python_version:
|
| 12 |
---
|
| 13 |
|
| 14 |
# Unconstrained & Detailed Clothed Human Digitization (ECON + ControlNet)
|
|
|
|
| 5 |
colorFrom: green
|
| 6 |
colorTo: pink
|
| 7 |
sdk: gradio
|
| 8 |
+
sdk_version: 4.14.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: true
|
| 11 |
+
python_version: 3.8.15
|
| 12 |
---
|
| 13 |
|
| 14 |
# Unconstrained & Detailed Clothed Human Digitization (ECON + ControlNet)
|
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
# install
|
| 2 |
|
| 3 |
-
import glob
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
|
|
@@ -8,10 +7,13 @@ import subprocess
|
|
| 8 |
|
| 9 |
if os.getenv('SYSTEM') == 'spaces':
|
| 10 |
# subprocess.run('pip install pyembree'.split())
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
subprocess.run("python setup.py build_ext --inplace".split(), cwd="./lib/common/libmesh/")
|
| 16 |
subprocess.run("python setup.py build_ext --inplace".split(), cwd="./lib/common/libvoxelize/")
|
| 17 |
|
|
@@ -19,37 +21,12 @@ from apps.infer import generate_model, generate_video
|
|
| 19 |
|
| 20 |
# running
|
| 21 |
|
| 22 |
-
|
| 23 |
# Unconstrained & Detailed Clothed Human Digitization (ECON + ControlNet)
|
| 24 |
### ECON: Explicit Clothed humans Optimized via Normal integration (CVPR 2023, Highlight)
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
<th width="20%">
|
| 28 |
-
<ul>
|
| 29 |
-
<li><strong>Homepage</strong> <a href="https://econ.is.tue.mpg.de/">econ.is.tue.mpg.de</a></li>
|
| 30 |
-
<li><strong>Code</strong> <a href="https://github.com/YuliangXiu/ECON">YuliangXiu/ECON</a></li>
|
| 31 |
-
<li><strong>Paper</strong> <a href="https://arxiv.org/abs/2212.07422">arXiv</a>, <a href="https://readpaper.com/paper/4736821012688027649">ReadPaper</a></li>
|
| 32 |
-
<li><strong>Chatroom</strong> <a href="https://discord.gg/Vqa7KBGRyk">Discord</a></li>
|
| 33 |
-
</ul>
|
| 34 |
-
<br>
|
| 35 |
-
<ul>
|
| 36 |
-
<li><strong>Colab Notebook</strong> <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing'><img style="display: inline-block;" src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a></li>
|
| 37 |
-
<li><strong>Blender Plugin</strong> <a href='https://carlosedubarreto.gumroad.com/l/CEB_ECON'><img style="display: inline-block;" src='https://img.shields.io/badge/Blender-F6DDCC.svg?logo=Blender' alt='Blender'></a></li>
|
| 38 |
-
<li><strong>Docker Image</strong> <a href='https://github.com/YuliangXiu/ECON/blob/master/docs/installation-docker.md'><img style="display: inline-block;" src='https://img.shields.io/badge/Docker-9cf.svg?logo=Docker' alt='Docker'></a></li>
|
| 39 |
-
<li><strong>Windows Setup</strong> <a href="https://github.com/YuliangXiu/ECON/blob/master/docs/installation-windows.md"><img style="display: inline-block;" src='https://img.shields.io/badge/Windows-00a2ed.svg?logo=Windows' akt='Windows'></a></li>
|
| 40 |
-
</ul>
|
| 41 |
-
|
| 42 |
-
<br>
|
| 43 |
-
<a href="https://twitter.com/yuliangxiu"><img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/yuliangxiu?style=social"></a><br>
|
| 44 |
-
<iframe src="https://ghbtns.com/github-btn.html?user=yuliangxiu&repo=ECON&type=star&count=true&v=2&size=small" frameborder="0" scrolling="0" width="100" height="20"></iframe>
|
| 45 |
-
</th>
|
| 46 |
-
<th width="40%">
|
| 47 |
-
<iframe width="560" height="315" src="https://www.youtube.com/embed/5PEd_p90kS0" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
| 48 |
-
</th>
|
| 49 |
-
<th width="40%">
|
| 50 |
-
<iframe width="560" height="315" src="https://www.youtube.com/embed/sbWZbTf6ZYk" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
| 51 |
-
</th>
|
| 52 |
-
</table>
|
| 53 |
|
| 54 |
|
| 55 |
#### Citation
|
|
@@ -90,10 +67,40 @@ description = '''
|
|
| 90 |
<center>
|
| 91 |
<a href="https://huggingface.co/spaces/Yuliang/ECON?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-lg-dark.svg"/></a>
|
| 92 |
<h2> Generate pose & prompt-guided images / Upload photos / Use examples → Submit Image (~3min) → Generate Video (~3min) </h2>
|
| 93 |
-
<h2><span style="color:red">ECON is only suitable for humanoid images and will not work well on cartoons with non-human shapes.</span></h2>
|
| 94 |
</center>
|
| 95 |
'''
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
from controlnet_aux import OpenposeDetector
|
| 98 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 99 |
from diffusers import UniPCMultistepScheduler
|
|
@@ -127,9 +134,6 @@ async (image_in_img, prompt, image_file_live_opt, live_conditioning) => {
|
|
| 127 |
"""
|
| 128 |
|
| 129 |
# Constants
|
| 130 |
-
low_threshold = 100
|
| 131 |
-
high_threshold = 200
|
| 132 |
-
default_step = 50
|
| 133 |
cached = False
|
| 134 |
|
| 135 |
# Models
|
|
@@ -167,11 +171,12 @@ blender, oc renderer, ultra high definition, 3d rendering
|
|
| 167 |
def get_pose(image):
|
| 168 |
return pose_model(image)
|
| 169 |
|
|
|
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
|
| 177 |
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None):
|
|
@@ -189,7 +194,7 @@ def generate_images(image, prompt, image_file_live_opt='file', live_conditioning
|
|
| 189 |
pose,
|
| 190 |
generator=generator,
|
| 191 |
num_images_per_prompt=3,
|
| 192 |
-
num_inference_steps=
|
| 193 |
)
|
| 194 |
all_outputs = []
|
| 195 |
all_outputs.append(pose)
|
|
@@ -207,11 +212,17 @@ def toggle(choice):
|
|
| 207 |
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
| 208 |
|
| 209 |
|
| 210 |
-
examples_pose =
|
| 211 |
-
examples_cloth =
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
with gr.Blocks() as demo:
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
out_lst = []
|
| 217 |
with gr.Row():
|
|
@@ -227,7 +238,7 @@ with gr.Blocks() as demo:
|
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
image_in_img = gr.Image(
|
| 230 |
-
|
| 231 |
)
|
| 232 |
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
| 233 |
|
|
@@ -246,7 +257,7 @@ with gr.Blocks() as demo:
|
|
| 246 |
gr.Markdown(hint_prompts)
|
| 247 |
|
| 248 |
with gr.Column():
|
| 249 |
-
gallery = gr.Gallery(label="Generated Images"
|
| 250 |
gallery_cache = gr.State()
|
| 251 |
|
| 252 |
gr.Markdown(
|
|
@@ -259,12 +270,12 @@ with gr.Blocks() as demo:
|
|
| 259 |
)
|
| 260 |
|
| 261 |
inp = gr.Image(type="filepath", label="Input Image for Reconstruction")
|
| 262 |
-
fitting_step = gr.
|
| 263 |
10,
|
| 264 |
100,
|
| 265 |
step=10,
|
| 266 |
label='Fitting steps (Slower yet Better-aligned SMPL-X)',
|
| 267 |
-
|
| 268 |
)
|
| 269 |
|
| 270 |
with gr.Row():
|
|
@@ -275,7 +286,7 @@ with gr.Blocks() as demo:
|
|
| 275 |
fn=generate_images,
|
| 276 |
inputs=[image_in_img, prompt, image_file_live_opt, live_conditioning],
|
| 277 |
outputs=[gallery, gallery_cache],
|
| 278 |
-
|
| 279 |
)
|
| 280 |
|
| 281 |
def get_select_index(cache, evt: gr.SelectData):
|
|
@@ -288,40 +299,41 @@ with gr.Blocks() as demo:
|
|
| 288 |
)
|
| 289 |
|
| 290 |
with gr.Row():
|
| 291 |
-
|
| 292 |
gr.Examples(
|
| 293 |
-
examples=
|
| 294 |
inputs=[inp],
|
| 295 |
cache_examples=cached,
|
| 296 |
-
fn=
|
| 297 |
-
outputs=
|
| 298 |
label="Hard Pose Examples"
|
| 299 |
)
|
| 300 |
|
| 301 |
gr.Examples(
|
| 302 |
-
examples=
|
| 303 |
inputs=[inp],
|
| 304 |
cache_examples=cached,
|
| 305 |
-
fn=
|
| 306 |
-
outputs=
|
| 307 |
label="Loose Cloth Examples"
|
| 308 |
)
|
| 309 |
|
| 310 |
-
out_vid = gr.Video(label="Shared on Twitter with #ECON")
|
| 311 |
|
| 312 |
with gr.Column():
|
| 313 |
-
overlap_inp = gr.Image(type="filepath", label="Image Normal Overlap")
|
| 314 |
out_final = gr.Model3D(
|
| 315 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="Clothed human", elem_id="avatar"
|
| 316 |
)
|
| 317 |
out_smpl = gr.Model3D(
|
| 318 |
-
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL-X body", elem_id="avatar"
|
| 319 |
)
|
| 320 |
|
| 321 |
vis_tensor_path = gr.State()
|
|
|
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
|
|
|
| 325 |
|
| 326 |
out_lst = [out_smpl, out_final, overlap_inp, vis_tensor_path]
|
| 327 |
|
|
@@ -332,10 +344,12 @@ with gr.Blocks() as demo:
|
|
| 332 |
)
|
| 333 |
|
| 334 |
btn_submit.click(fn=generate_model, inputs=[inp, fitting_step], outputs=out_lst)
|
| 335 |
-
|
| 336 |
-
demo.load(
|
|
|
|
| 337 |
|
| 338 |
if __name__ == "__main__":
|
| 339 |
|
| 340 |
demo.queue()
|
| 341 |
-
demo.launch(max_threads=
|
|
|
|
|
|
| 1 |
# install
|
| 2 |
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
| 5 |
|
|
|
|
| 7 |
|
| 8 |
if os.getenv('SYSTEM') == 'spaces':
|
| 9 |
# subprocess.run('pip install pyembree'.split())
|
| 10 |
+
try:
|
| 11 |
+
import pytorch3d
|
| 12 |
+
except ImportError:
|
| 13 |
+
subprocess.run(
|
| 14 |
+
'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu116_pyt1130/download.html'
|
| 15 |
+
.split()
|
| 16 |
+
)
|
| 17 |
subprocess.run("python setup.py build_ext --inplace".split(), cwd="./lib/common/libmesh/")
|
| 18 |
subprocess.run("python setup.py build_ext --inplace".split(), cwd="./lib/common/libvoxelize/")
|
| 19 |
|
|
|
|
| 21 |
|
| 22 |
# running
|
| 23 |
|
| 24 |
+
title = '''
|
| 25 |
# Unconstrained & Detailed Clothed Human Digitization (ECON + ControlNet)
|
| 26 |
### ECON: Explicit Clothed humans Optimized via Normal integration (CVPR 2023, Highlight)
|
| 27 |
+
'''
|
| 28 |
|
| 29 |
+
bottom = '''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
#### Citation
|
|
|
|
| 67 |
<center>
|
| 68 |
<a href="https://huggingface.co/spaces/Yuliang/ECON?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-lg-dark.svg"/></a>
|
| 69 |
<h2> Generate pose & prompt-guided images / Upload photos / Use examples → Submit Image (~3min) → Generate Video (~3min) </h2>
|
| 70 |
+
<h2><span style="color:red">ECON is only suitable for "humanoid images" and will not work well on cartoons with non-human shapes.</span></h2>
|
| 71 |
</center>
|
| 72 |
'''
|
| 73 |
|
| 74 |
+
description = '''
|
| 75 |
+
<table>
|
| 76 |
+
<th width="20%">
|
| 77 |
+
<ul>
|
| 78 |
+
<li><strong>Homepage</strong> <a href="https://econ.is.tue.mpg.de/">econ.is.tue.mpg.de</a></li>
|
| 79 |
+
<li><strong>Code</strong> <a href="https://github.com/YuliangXiu/ECON">YuliangXiu/ECON</a></li>
|
| 80 |
+
<li><strong>Paper</strong> <a href="https://arxiv.org/abs/2212.07422">arXiv</a>, <a href="https://readpaper.com/paper/4736821012688027649">ReadPaper</a></li>
|
| 81 |
+
<li><strong>Chatroom</strong> <a href="https://discord.gg/Vqa7KBGRyk">Discord</a></li>
|
| 82 |
+
</ul>
|
| 83 |
+
<br>
|
| 84 |
+
<ul>
|
| 85 |
+
<li><strong>Colab Notebook</strong> <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing'><img style="display: inline-block;" src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a></li>
|
| 86 |
+
<li><strong>Blender Plugin</strong> <a href='https://carlosedubarreto.gumroad.com/l/CEB_ECON'><img style="display: inline-block;" src='https://img.shields.io/badge/Blender-F6DDCC.svg?logo=Blender' alt='Blender'></a></li>
|
| 87 |
+
<li><strong>Docker Image</strong> <a href='https://github.com/YuliangXiu/ECON/blob/master/docs/installation-docker.md'><img style="display: inline-block;" src='https://img.shields.io/badge/Docker-9cf.svg?logo=Docker' alt='Docker'></a></li>
|
| 88 |
+
<li><strong>Windows Setup</strong> <a href="https://github.com/YuliangXiu/ECON/blob/master/docs/installation-windows.md"><img style="display: inline-block;" src='https://img.shields.io/badge/Windows-00a2ed.svg?logo=Windows' akt='Windows'></a></li>
|
| 89 |
+
</ul>
|
| 90 |
+
|
| 91 |
+
<br>
|
| 92 |
+
<a href="https://twitter.com/yuliangxiu"><img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/yuliangxiu?style=social"></a><br>
|
| 93 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=yuliangxiu&repo=ECON&type=star&count=true&v=2&size=small" frameborder="0" scrolling="0" width="100" height="20"></iframe>
|
| 94 |
+
</th>
|
| 95 |
+
<th width="40%">
|
| 96 |
+
<iframe width="560" height="315" src="https://www.youtube.com/embed/5PEd_p90kS0" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
| 97 |
+
</th>
|
| 98 |
+
<th width="40%">
|
| 99 |
+
<iframe width="560" height="315" src="https://www.youtube.com/embed/sbWZbTf6ZYk" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
|
| 100 |
+
</th>
|
| 101 |
+
</table>
|
| 102 |
+
'''
|
| 103 |
+
|
| 104 |
from controlnet_aux import OpenposeDetector
|
| 105 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 106 |
from diffusers import UniPCMultistepScheduler
|
|
|
|
| 134 |
"""
|
| 135 |
|
| 136 |
# Constants
|
|
|
|
|
|
|
|
|
|
| 137 |
cached = False
|
| 138 |
|
| 139 |
# Models
|
|
|
|
| 171 |
def get_pose(image):
|
| 172 |
return pose_model(image)
|
| 173 |
|
| 174 |
+
import sys
|
| 175 |
|
| 176 |
+
def read_logs():
|
| 177 |
+
sys.stdout.flush()
|
| 178 |
+
with open("output.log", "r") as f:
|
| 179 |
+
return f.read()
|
| 180 |
|
| 181 |
|
| 182 |
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None):
|
|
|
|
| 194 |
pose,
|
| 195 |
generator=generator,
|
| 196 |
num_images_per_prompt=3,
|
| 197 |
+
num_inference_steps=50,
|
| 198 |
)
|
| 199 |
all_outputs = []
|
| 200 |
all_outputs.append(pose)
|
|
|
|
| 212 |
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html)
|
| 213 |
|
| 214 |
|
| 215 |
+
examples_pose = 'examples/pose'
|
| 216 |
+
examples_cloth = 'examples/cloth'
|
| 217 |
+
|
| 218 |
+
def show_video():
|
| 219 |
+
return gr.update(visible=True), gr.update(visible=True)
|
| 220 |
|
| 221 |
with gr.Blocks() as demo:
|
| 222 |
+
|
| 223 |
+
gr.Markdown(title)
|
| 224 |
+
gr.HTML(description)
|
| 225 |
+
gr.Markdown(bottom)
|
| 226 |
|
| 227 |
out_lst = []
|
| 228 |
with gr.Row():
|
|
|
|
| 238 |
|
| 239 |
with gr.Row():
|
| 240 |
image_in_img = gr.Image(
|
| 241 |
+
visible=True, type="pil", label="Image for Pose"
|
| 242 |
)
|
| 243 |
canvas = gr.HTML(None, elem_id="canvas_html", visible=False)
|
| 244 |
|
|
|
|
| 257 |
gr.Markdown(hint_prompts)
|
| 258 |
|
| 259 |
with gr.Column():
|
| 260 |
+
gallery = gr.Gallery(label="Generated Images", columns=[2],rows=[2])
|
| 261 |
gallery_cache = gr.State()
|
| 262 |
|
| 263 |
gr.Markdown(
|
|
|
|
| 270 |
)
|
| 271 |
|
| 272 |
inp = gr.Image(type="filepath", label="Input Image for Reconstruction")
|
| 273 |
+
fitting_step = gr.Slider(
|
| 274 |
10,
|
| 275 |
100,
|
| 276 |
step=10,
|
| 277 |
label='Fitting steps (Slower yet Better-aligned SMPL-X)',
|
| 278 |
+
value=50
|
| 279 |
)
|
| 280 |
|
| 281 |
with gr.Row():
|
|
|
|
| 286 |
fn=generate_images,
|
| 287 |
inputs=[image_in_img, prompt, image_file_live_opt, live_conditioning],
|
| 288 |
outputs=[gallery, gallery_cache],
|
| 289 |
+
js=get_js_image
|
| 290 |
)
|
| 291 |
|
| 292 |
def get_select_index(cache, evt: gr.SelectData):
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
with gr.Row():
|
| 302 |
+
|
| 303 |
gr.Examples(
|
| 304 |
+
examples=examples_pose,
|
| 305 |
inputs=[inp],
|
| 306 |
cache_examples=cached,
|
| 307 |
+
fn=generate_model,
|
| 308 |
+
outputs=out_lst,
|
| 309 |
label="Hard Pose Examples"
|
| 310 |
)
|
| 311 |
|
| 312 |
gr.Examples(
|
| 313 |
+
examples=examples_cloth,
|
| 314 |
inputs=[inp],
|
| 315 |
cache_examples=cached,
|
| 316 |
+
fn=generate_model,
|
| 317 |
+
outputs=out_lst,
|
| 318 |
label="Loose Cloth Examples"
|
| 319 |
)
|
| 320 |
|
|
|
|
| 321 |
|
| 322 |
with gr.Column():
|
| 323 |
+
overlap_inp = gr.Image(type="filepath", label="Image Normal Overlap")
|
| 324 |
out_final = gr.Model3D(
|
| 325 |
clear_color=[0.0, 0.0, 0.0, 0.0], label="Clothed human", elem_id="avatar"
|
| 326 |
)
|
| 327 |
out_smpl = gr.Model3D(
|
| 328 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="SMPL-X body (via PIXIE)", elem_id="avatar"
|
| 329 |
)
|
| 330 |
|
| 331 |
vis_tensor_path = gr.State()
|
| 332 |
+
|
| 333 |
|
| 334 |
+
# logs = gr.Textbox(max_lines=10, label="Logs")
|
| 335 |
+
btn_video = gr.Button("Generate Video (~3min)", visible=False)
|
| 336 |
+
out_vid = gr.Video(label="Shared on Twitter with #ECON", visible=False)
|
| 337 |
|
| 338 |
out_lst = [out_smpl, out_final, overlap_inp, vis_tensor_path]
|
| 339 |
|
|
|
|
| 344 |
)
|
| 345 |
|
| 346 |
btn_submit.click(fn=generate_model, inputs=[inp, fitting_step], outputs=out_lst)
|
| 347 |
+
btn_submit.click(fn=show_video, outputs=[btn_video, out_vid])
|
| 348 |
+
# demo.load(read_logs, None, logs, every=1, queue=True, scroll_to_output=True)
|
| 349 |
+
demo.load(None, None, None, js=load_js)
|
| 350 |
|
| 351 |
if __name__ == "__main__":
|
| 352 |
|
| 353 |
demo.queue()
|
| 354 |
+
demo.launch(max_threads=4)
|
| 355 |
+
# demo.launch(max_threads=2, debug=True, server_port=8888, server_name="0.0.0.0")
|
apps/benchmark.py
CHANGED
|
@@ -90,7 +90,7 @@ if __name__ == "__main__":
|
|
| 90 |
normal_net.netG.eval()
|
| 91 |
print(
|
| 92 |
colored(
|
| 93 |
-
f"Resume Normal Estimator from {
|
| 94 |
)
|
| 95 |
)
|
| 96 |
|
|
|
|
| 90 |
normal_net.netG.eval()
|
| 91 |
print(
|
| 92 |
colored(
|
| 93 |
+
f"Resume Normal Estimator from: {cfg.normal_path}", "green"
|
| 94 |
)
|
| 95 |
)
|
| 96 |
|
apps/infer.py
CHANGED
|
@@ -30,7 +30,7 @@ import trimesh
|
|
| 30 |
from pytorch3d.ops import SubdivideMeshes
|
| 31 |
from huggingface_hub import hf_hub_download
|
| 32 |
from termcolor import colored
|
| 33 |
-
from tqdm
|
| 34 |
|
| 35 |
from apps.IFGeo import IFGeo
|
| 36 |
from apps.Normal import Normal
|
|
@@ -65,14 +65,32 @@ def generate_video(vis_tensor_path):
|
|
| 65 |
|
| 66 |
render.load_meshes(verts_lst, faces_lst)
|
| 67 |
render.get_rendered_video_multi(in_tensor, tmp_path)
|
| 68 |
-
|
| 69 |
os.system(f"ffmpeg -y -loglevel quiet -stats -i {tmp_path} -vcodec libx264 {out_path}")
|
| 70 |
-
|
| 71 |
return out_path
|
| 72 |
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def generate_model(in_path, fitting_step=50):
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
out_dir = "./results"
|
| 77 |
|
| 78 |
# cfg read and merge
|
|
@@ -101,7 +119,7 @@ def generate_model(in_path, fitting_step=50):
|
|
| 101 |
normal_net.netG.eval()
|
| 102 |
print(
|
| 103 |
colored(
|
| 104 |
-
f"Resume Normal Estimator from
|
| 105 |
)
|
| 106 |
)
|
| 107 |
|
|
@@ -129,10 +147,10 @@ def generate_model(in_path, fitting_step=50):
|
|
| 129 |
ifnet = ifnet.to(device)
|
| 130 |
ifnet.netG.eval()
|
| 131 |
|
| 132 |
-
print(colored(f"Resume IF-Net+ from
|
| 133 |
-
print(colored(f"Complete with
|
| 134 |
else:
|
| 135 |
-
print(colored(f"Complete with
|
| 136 |
|
| 137 |
dataset = TestDataset(dataset_param, device)
|
| 138 |
|
|
@@ -142,7 +160,7 @@ def generate_model(in_path, fitting_step=50):
|
|
| 142 |
|
| 143 |
losses = init_loss()
|
| 144 |
|
| 145 |
-
print(f"{data['name']}")
|
| 146 |
|
| 147 |
# final results rendered as image (PNG)
|
| 148 |
# 1. Render the final fitted SMPL (xxx_smpl.png)
|
|
@@ -261,7 +279,8 @@ def generate_model(in_path, fitting_step=50):
|
|
| 261 |
|
| 262 |
ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device)
|
| 263 |
ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device)
|
| 264 |
-
smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2]
|
|
|
|
| 265 |
|
| 266 |
# render optimized mesh as normal [-1,1]
|
| 267 |
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
|
|
@@ -293,7 +312,7 @@ def generate_model(in_path, fitting_step=50):
|
|
| 293 |
# for highly occluded body, reply only on high-confidence landmarks, no silhouette+normal loss
|
| 294 |
|
| 295 |
# BUG: PyTorch3D silhouette renderer generates dilated mask
|
| 296 |
-
bg_value = in_tensor["T_normal_F"][0, 0, 0, 0]
|
| 297 |
smpl_arr_fake = torch.cat([
|
| 298 |
in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
|
| 299 |
in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
|
|
@@ -329,6 +348,7 @@ def generate_model(in_path, fitting_step=50):
|
|
| 329 |
occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()])
|
| 330 |
pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
|
| 331 |
loop_smpl.set_description(pbar_desc)
|
|
|
|
| 332 |
|
| 333 |
# save intermediate results
|
| 334 |
if (i == fitting_step - 1):
|
|
@@ -611,7 +631,7 @@ def generate_model(in_path, fitting_step=50):
|
|
| 611 |
cfg.bni.poisson_depth,
|
| 612 |
)
|
| 613 |
print(
|
| 614 |
-
colored(f"
|
| 615 |
)
|
| 616 |
|
| 617 |
dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
|
|
|
|
| 30 |
from pytorch3d.ops import SubdivideMeshes
|
| 31 |
from huggingface_hub import hf_hub_download
|
| 32 |
from termcolor import colored
|
| 33 |
+
from tqdm import tqdm
|
| 34 |
|
| 35 |
from apps.IFGeo import IFGeo
|
| 36 |
from apps.Normal import Normal
|
|
|
|
| 65 |
|
| 66 |
render.load_meshes(verts_lst, faces_lst)
|
| 67 |
render.get_rendered_video_multi(in_tensor, tmp_path)
|
| 68 |
+
|
| 69 |
os.system(f"ffmpeg -y -loglevel quiet -stats -i {tmp_path} -vcodec libx264 {out_path}")
|
| 70 |
+
|
| 71 |
return out_path
|
| 72 |
|
| 73 |
+
import sys
|
| 74 |
+
class Logger:
|
| 75 |
+
def __init__(self, filename):
|
| 76 |
+
self.terminal = sys.stdout
|
| 77 |
+
self.log = open(filename, "w")
|
| 78 |
+
|
| 79 |
+
def write(self, message):
|
| 80 |
+
self.terminal.write(message)
|
| 81 |
+
self.log.write(message)
|
| 82 |
+
|
| 83 |
+
def flush(self):
|
| 84 |
+
self.terminal.flush()
|
| 85 |
+
self.log.flush()
|
| 86 |
+
|
| 87 |
+
def isatty(self):
|
| 88 |
+
return False
|
| 89 |
+
|
| 90 |
def generate_model(in_path, fitting_step=50):
|
| 91 |
+
|
| 92 |
+
sys.stdout = Logger("./output.log")
|
| 93 |
+
|
| 94 |
out_dir = "./results"
|
| 95 |
|
| 96 |
# cfg read and merge
|
|
|
|
| 119 |
normal_net.netG.eval()
|
| 120 |
print(
|
| 121 |
colored(
|
| 122 |
+
f"Resume Normal Estimator from : {cfg.normal_path} ", "green"
|
| 123 |
)
|
| 124 |
)
|
| 125 |
|
|
|
|
| 147 |
ifnet = ifnet.to(device)
|
| 148 |
ifnet.netG.eval()
|
| 149 |
|
| 150 |
+
print(colored(f"Resume IF-Net+ from : {cfg.ifnet_path} ", "green"))
|
| 151 |
+
print(colored(f"Complete with : IF-Nets+ (Implicit) ", "green"))
|
| 152 |
else:
|
| 153 |
+
print(colored(f"Complete with : SMPL-X (Explicit) ", "green"))
|
| 154 |
|
| 155 |
dataset = TestDataset(dataset_param, device)
|
| 156 |
|
|
|
|
| 160 |
|
| 161 |
losses = init_loss()
|
| 162 |
|
| 163 |
+
print(f"Subject name: {data['name']}")
|
| 164 |
|
| 165 |
# final results rendered as image (PNG)
|
| 166 |
# 1. Render the final fitted SMPL (xxx_smpl.png)
|
|
|
|
| 279 |
|
| 280 |
ghum_lmks = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], :2].to(device)
|
| 281 |
ghum_conf = data["landmark"][:, SMPLX_object.ghum_smpl_pairs[:, 0], -1].to(device)
|
| 282 |
+
smpl_lmks = smpl_joints_3d[:, SMPLX_object.ghum_smpl_pairs[:, 1], :2].to(device)
|
| 283 |
+
|
| 284 |
|
| 285 |
# render optimized mesh as normal [-1,1]
|
| 286 |
in_tensor["T_normal_F"], in_tensor["T_normal_B"] = dataset.render_normal(
|
|
|
|
| 312 |
# for highly occluded body, reply only on high-confidence landmarks, no silhouette+normal loss
|
| 313 |
|
| 314 |
# BUG: PyTorch3D silhouette renderer generates dilated mask
|
| 315 |
+
bg_value = in_tensor["T_normal_F"][0, 0, 0, 0].to(device)
|
| 316 |
smpl_arr_fake = torch.cat([
|
| 317 |
in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
|
| 318 |
in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
|
|
|
|
| 348 |
occlude_str = ''.join([str(j) for j in body_overlap_flag.int().tolist()])
|
| 349 |
pbar_desc += colored(f"| loose:{loose_str}, occluded:{occlude_str}", "yellow")
|
| 350 |
loop_smpl.set_description(pbar_desc)
|
| 351 |
+
print(pbar_desc)
|
| 352 |
|
| 353 |
# save intermediate results
|
| 354 |
if (i == fitting_step - 1):
|
|
|
|
| 631 |
cfg.bni.poisson_depth,
|
| 632 |
)
|
| 633 |
print(
|
| 634 |
+
colored(f"Poisson completion to : {final_path} ", "yellow")
|
| 635 |
)
|
| 636 |
|
| 637 |
dataset.render.load_meshes(final_mesh.vertices, final_mesh.faces)
|
gradio_cached_examples/13/log.csv
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
flag,username,timestamp
|
| 2 |
-
,,2023-04-15 18:15:46.412679
|
|
|
|
|
|
|
|
|
gradio_cached_examples/25/log.csv
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
flag,username,timestamp
|
| 2 |
-
,,2023-04-16 10:48:00.715491
|
| 3 |
-
,,2023-04-16 10:50:02.250539
|
| 4 |
-
,,2023-04-16 10:52:15.683112
|
| 5 |
-
,,2023-04-16 10:54:18.253116
|
| 6 |
-
,,2023-04-16 10:56:22.892765
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/common/imutils.py
CHANGED
|
@@ -193,7 +193,7 @@ def process_image(img_file, hps_type, single, input_res, detector):
|
|
| 193 |
predictions = detector(img_square / 255.)[0]
|
| 194 |
|
| 195 |
if single:
|
| 196 |
-
top_score = predictions["scores"][predictions["labels"] == 1]
|
| 197 |
human_ids = torch.where(predictions["scores"] == top_score)[0]
|
| 198 |
else:
|
| 199 |
human_ids = torch.logical_and(predictions["labels"] == 1,
|
|
|
|
| 193 |
predictions = detector(img_square / 255.)[0]
|
| 194 |
|
| 195 |
if single:
|
| 196 |
+
top_score = max(predictions["scores"][predictions["labels"] == 1])
|
| 197 |
human_ids = torch.where(predictions["scores"] == top_score)[0]
|
| 198 |
else:
|
| 199 |
human_ids = torch.logical_and(predictions["labels"] == 1,
|
lib/common/libmesh/triangle_hash.cpp
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
lib/common/libvoxelize/voxelize.c
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
lib/common/local_affine.py
CHANGED
|
@@ -138,6 +138,8 @@ def register(target_mesh, src_mesh, device, verbose=True):
|
|
| 138 |
cloth_loss.backward(retain_graph=True)
|
| 139 |
optimizer_cloth.step()
|
| 140 |
scheduler_cloth.step(cloth_loss)
|
|
|
|
|
|
|
| 141 |
|
| 142 |
final = trimesh.Trimesh(
|
| 143 |
src_mesh.verts_packed().detach().squeeze(0).cpu(),
|
|
|
|
| 138 |
cloth_loss.backward(retain_graph=True)
|
| 139 |
optimizer_cloth.step()
|
| 140 |
scheduler_cloth.step(cloth_loss)
|
| 141 |
+
|
| 142 |
+
print(pbar_desc)
|
| 143 |
|
| 144 |
final = trimesh.Trimesh(
|
| 145 |
src_mesh.verts_packed().detach().squeeze(0).cpu(),
|
lib/common/render.py
CHANGED
|
@@ -16,6 +16,7 @@
|
|
| 16 |
|
| 17 |
import math
|
| 18 |
import os
|
|
|
|
| 19 |
|
| 20 |
import cv2
|
| 21 |
import numpy as np
|
|
@@ -318,7 +319,7 @@ class Render:
|
|
| 318 |
)
|
| 319 |
|
| 320 |
pbar = tqdm(range(len(self.meshes)))
|
| 321 |
-
|
| 322 |
|
| 323 |
mesh_renders = [] #[(N_cam, 3, res, res)*N_mesh]
|
| 324 |
|
|
@@ -343,10 +344,10 @@ class Render:
|
|
| 343 |
)[..., :3].permute(0, 3, 1, 2)
|
| 344 |
)
|
| 345 |
mesh_renders.append(torch.cat(norm_lst).detach().cpu())
|
| 346 |
-
|
| 347 |
# generate video frame by frame
|
| 348 |
pbar = tqdm(range(len(self.cam_pos["around"])))
|
| 349 |
-
|
| 350 |
|
| 351 |
for cam_id in pbar:
|
| 352 |
img_raw = data["img_raw"]
|
|
|
|
| 16 |
|
| 17 |
import math
|
| 18 |
import os
|
| 19 |
+
import sys
|
| 20 |
|
| 21 |
import cv2
|
| 22 |
import numpy as np
|
|
|
|
| 319 |
)
|
| 320 |
|
| 321 |
pbar = tqdm(range(len(self.meshes)))
|
| 322 |
+
print(colored(f"Normal Rendering {os.path.basename(save_path)}...", "blue"))
|
| 323 |
|
| 324 |
mesh_renders = [] #[(N_cam, 3, res, res)*N_mesh]
|
| 325 |
|
|
|
|
| 344 |
)[..., :3].permute(0, 3, 1, 2)
|
| 345 |
)
|
| 346 |
mesh_renders.append(torch.cat(norm_lst).detach().cpu())
|
| 347 |
+
|
| 348 |
# generate video frame by frame
|
| 349 |
pbar = tqdm(range(len(self.cam_pos["around"])))
|
| 350 |
+
print(colored(f"Video Exporting {os.path.basename(save_path)}...", "blue"))
|
| 351 |
|
| 352 |
for cam_id in pbar:
|
| 353 |
img_raw = data["img_raw"]
|
lib/dataset/TestDataset.py
CHANGED
|
@@ -81,7 +81,7 @@ class TestDataset:
|
|
| 81 |
|
| 82 |
print(
|
| 83 |
colored(
|
| 84 |
-
f"SMPL-X estimate with {
|
| 85 |
)
|
| 86 |
)
|
| 87 |
|
|
|
|
| 81 |
|
| 82 |
print(
|
| 83 |
colored(
|
| 84 |
+
f"SMPL-X estimate with {self.hps_type.upper()}", "green"
|
| 85 |
)
|
| 86 |
)
|
| 87 |
|
lib/pymafx/utils/sample_mesh.py
DELETED
|
@@ -1,66 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
import numpy as np
|
| 4 |
-
import trimesh
|
| 5 |
-
|
| 6 |
-
from .utils.libmesh import check_mesh_contains
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def get_occ_gt(
|
| 10 |
-
in_path=None,
|
| 11 |
-
vertices=None,
|
| 12 |
-
faces=None,
|
| 13 |
-
pts_num=1000,
|
| 14 |
-
points_sigma=0.01,
|
| 15 |
-
with_dp=False,
|
| 16 |
-
points=None,
|
| 17 |
-
extra_points=None
|
| 18 |
-
):
|
| 19 |
-
if in_path is not None:
|
| 20 |
-
mesh = trimesh.load(in_path, process=False)
|
| 21 |
-
print(type(mesh.vertices), mesh.vertices.shape, mesh.faces.shape)
|
| 22 |
-
|
| 23 |
-
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
|
| 24 |
-
|
| 25 |
-
# print('get_occ_gt', type(mesh.vertices), mesh.vertices.shape, mesh.faces.shape)
|
| 26 |
-
|
| 27 |
-
# points_size = 100000
|
| 28 |
-
points_padding = 0.1
|
| 29 |
-
# points_sigma = 0.01
|
| 30 |
-
points_uniform_ratio = 0.5
|
| 31 |
-
n_points_uniform = int(pts_num * points_uniform_ratio)
|
| 32 |
-
n_points_surface = pts_num - n_points_uniform
|
| 33 |
-
|
| 34 |
-
if points is None:
|
| 35 |
-
points_scale = 2.0
|
| 36 |
-
boxsize = points_scale + points_padding
|
| 37 |
-
points_uniform = np.random.rand(n_points_uniform, 3)
|
| 38 |
-
points_uniform = boxsize * (points_uniform - 0.5)
|
| 39 |
-
points_surface, index_surface = mesh.sample(n_points_surface, return_index=True)
|
| 40 |
-
points_surface += points_sigma * np.random.randn(n_points_surface, 3)
|
| 41 |
-
points = np.concatenate([points_uniform, points_surface], axis=0)
|
| 42 |
-
|
| 43 |
-
if extra_points is not None:
|
| 44 |
-
extra_points += points_sigma * np.random.randn(len(extra_points), 3)
|
| 45 |
-
points = np.concatenate([points, extra_points], axis=0)
|
| 46 |
-
|
| 47 |
-
occupancies = check_mesh_contains(mesh, points)
|
| 48 |
-
|
| 49 |
-
index_surface = None
|
| 50 |
-
|
| 51 |
-
# points = points.astype(dtype)
|
| 52 |
-
|
| 53 |
-
# print('occupancies', occupancies.dtype, np.sum(occupancies), occupancies.shape)
|
| 54 |
-
# occupancies = np.packbits(occupancies)
|
| 55 |
-
# print('occupancies bit', occupancies.dtype, np.sum(occupancies), occupancies.shape)
|
| 56 |
-
|
| 57 |
-
# print('occupancies', points.shape, occupancies.shape, occupancies.dtype, np.sum(occupancies), index_surface.shape)
|
| 58 |
-
|
| 59 |
-
return_dict = {}
|
| 60 |
-
return_dict['points'] = points
|
| 61 |
-
return_dict['points.occ'] = occupancies
|
| 62 |
-
return_dict['sf_sidx'] = index_surface
|
| 63 |
-
|
| 64 |
-
# export_pointcloud(mesh, modelname, loc, scale, args)
|
| 65 |
-
# export_points(mesh, modelname, loc, scale, args)
|
| 66 |
-
return return_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output.log
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
requirements.txt
CHANGED
|
@@ -27,6 +27,6 @@ transformers
|
|
| 27 |
controlnet_aux
|
| 28 |
xformers==0.0.16
|
| 29 |
triton
|
|
|
|
|
|
|
| 30 |
git+https://github.com/YuliangXiu/rembg.git
|
| 31 |
-
git+https://github.com/huggingface/diffusers.git
|
| 32 |
-
git+https://github.com/huggingface/accelerate.git
|
|
|
|
| 27 |
controlnet_aux
|
| 28 |
xformers==0.0.16
|
| 29 |
triton
|
| 30 |
+
diffusers
|
| 31 |
+
accelerate
|
| 32 |
git+https://github.com/YuliangXiu/rembg.git
|
|
|
|
|
|