models moved to huggingface repo
Browse files- annotation_tab/__init__.py +3 -0
- annotation_tab/annotation_logic.py +118 -0
- annotation_tab/annotation_setup.py +25 -0
- app.py +9 -12
- inference_tab/__init__.py +4 -0
- inference_tab/inference_logic.py +748 -0
- inference_tab/inference_setup.py +19 -0
- packages.txt +2 -0
- requirements.txt +18 -3
annotation_tab/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .annotation_setup import get_annotation_widgets
|
| 2 |
+
|
| 3 |
+
__all__ = ["get_annotation_widgets"]
|
annotation_tab/annotation_logic.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import threading
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# ==== CONFIG ====
|
| 8 |
+
IMAGE_FOLDER = "output/blobs"
|
| 9 |
+
CSV_FILE = "output/manual_annotations.csv"
|
| 10 |
+
|
| 11 |
+
# ==== STATE ====
|
| 12 |
+
if os.path.exists(CSV_FILE):
|
| 13 |
+
df_annotations = pd.read_csv(CSV_FILE)
|
| 14 |
+
annotated_ids = set(df_annotations["blob_id"].astype(str).tolist())
|
| 15 |
+
else:
|
| 16 |
+
df_annotations = pd.DataFrame(columns=["blob_id", "human_ocr"])
|
| 17 |
+
df_annotations.to_csv(CSV_FILE, index=False)
|
| 18 |
+
annotated_ids = set()
|
| 19 |
+
|
| 20 |
+
all_images = [f for f in os.listdir(IMAGE_FOLDER) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
| 21 |
+
all_images_paths = [os.path.join(IMAGE_FOLDER, f) for f in all_images]
|
| 22 |
+
current_index = 0
|
| 23 |
+
|
| 24 |
+
def get_current_image_path():
|
| 25 |
+
if 0 <= current_index < len(all_images_paths):
|
| 26 |
+
return all_images_paths[current_index]
|
| 27 |
+
return None
|
| 28 |
+
|
| 29 |
+
def is_annotated(image_path):
|
| 30 |
+
return os.path.basename(image_path) in annotated_ids
|
| 31 |
+
|
| 32 |
+
def get_annotation_for_image(image_path):
|
| 33 |
+
filename = os.path.basename(image_path)
|
| 34 |
+
row = df_annotations[df_annotations["blob_id"] == filename]
|
| 35 |
+
if not row.empty:
|
| 36 |
+
return row["human_ocr"].values[0]
|
| 37 |
+
return ""
|
| 38 |
+
|
| 39 |
+
def find_next_unannotated_index(start):
|
| 40 |
+
n = len(all_images_paths)
|
| 41 |
+
idx = start
|
| 42 |
+
for _ in range(n):
|
| 43 |
+
idx = (idx + 1) % n
|
| 44 |
+
if not is_annotated(all_images_paths[idx]):
|
| 45 |
+
return idx
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
def save_annotation(user_text):
|
| 49 |
+
global df_annotations, annotated_ids
|
| 50 |
+
img_path = get_current_image_path()
|
| 51 |
+
if img_path:
|
| 52 |
+
filename = os.path.basename(img_path)
|
| 53 |
+
text_value = user_text.strip() if user_text and user_text.strip() else ""
|
| 54 |
+
|
| 55 |
+
if filename in annotated_ids:
|
| 56 |
+
df_annotations.loc[df_annotations["blob_id"] == filename, "human_ocr"] = text_value
|
| 57 |
+
else:
|
| 58 |
+
new_row = pd.DataFrame([{"blob_id": filename, "human_ocr": text_value}])
|
| 59 |
+
df_annotations = pd.concat([df_annotations, new_row], ignore_index=True)
|
| 60 |
+
annotated_ids.add(filename)
|
| 61 |
+
|
| 62 |
+
df_annotations.to_csv(CSV_FILE, index=False)
|
| 63 |
+
|
| 64 |
+
def save_and_next(user_text):
|
| 65 |
+
global current_index
|
| 66 |
+
if get_current_image_path() is None:
|
| 67 |
+
return None, "", gr.update(visible=True, value="No images available."), "No image loaded"
|
| 68 |
+
|
| 69 |
+
save_annotation(user_text)
|
| 70 |
+
next_idx = find_next_unannotated_index(current_index)
|
| 71 |
+
if next_idx is None:
|
| 72 |
+
return None, "", gr.update(visible=True, value="All images annotated."), ""
|
| 73 |
+
|
| 74 |
+
current_index = next_idx
|
| 75 |
+
img_path = get_current_image_path()
|
| 76 |
+
annotation = get_annotation_for_image(img_path)
|
| 77 |
+
return img_path, annotation, gr.update(visible=False), img_path
|
| 78 |
+
|
| 79 |
+
def previous_image():
|
| 80 |
+
global current_index
|
| 81 |
+
if len(all_images_paths) == 0:
|
| 82 |
+
return None, "", gr.update(visible=True, value="No images available."), "No image loaded"
|
| 83 |
+
|
| 84 |
+
current_index = (current_index - 1) % len(all_images_paths)
|
| 85 |
+
img_path = get_current_image_path()
|
| 86 |
+
annotation = get_annotation_for_image(img_path)
|
| 87 |
+
return img_path, annotation, gr.update(visible=False), img_path
|
| 88 |
+
|
| 89 |
+
def delete_and_next():
|
| 90 |
+
global current_index, all_images_paths, annotated_ids, df_annotations
|
| 91 |
+
img_path = get_current_image_path()
|
| 92 |
+
if img_path and os.path.exists(img_path):
|
| 93 |
+
os.remove(img_path)
|
| 94 |
+
|
| 95 |
+
filename = os.path.basename(img_path)
|
| 96 |
+
if filename in annotated_ids:
|
| 97 |
+
annotated_ids.remove(filename)
|
| 98 |
+
df_annotations = df_annotations[df_annotations["blob_id"] != filename]
|
| 99 |
+
df_annotations.to_csv(CSV_FILE, index=False)
|
| 100 |
+
|
| 101 |
+
del all_images_paths[current_index]
|
| 102 |
+
|
| 103 |
+
if len(all_images_paths) == 0:
|
| 104 |
+
return None, "", gr.update(visible=True, value="No images left."), "No image loaded"
|
| 105 |
+
|
| 106 |
+
current_index = min(current_index, len(all_images_paths) - 1)
|
| 107 |
+
img_path = get_current_image_path()
|
| 108 |
+
annotation = get_annotation_for_image(img_path)
|
| 109 |
+
return img_path, annotation, gr.update(visible=False), img_path
|
| 110 |
+
|
| 111 |
+
def shutdown():
|
| 112 |
+
os._exit(0)
|
| 113 |
+
|
| 114 |
+
def save_and_exit(user_text):
|
| 115 |
+
if get_current_image_path() is not None:
|
| 116 |
+
save_annotation(user_text)
|
| 117 |
+
threading.Timer(1, shutdown).start()
|
| 118 |
+
return None, "", gr.update(visible=True, value="Session closed."), ""
|
annotation_tab/annotation_setup.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from .annotation_logic import (
|
| 3 |
+
save_and_next, previous_image, delete_and_next, save_and_exit,
|
| 4 |
+
get_current_image_path, get_annotation_for_image
|
| 5 |
+
)
|
| 6 |
+
|
| 7 |
+
def get_annotation_widgets():
|
| 8 |
+
message = gr.Markdown("", visible=False)
|
| 9 |
+
image_path_display = gr.Markdown(value=get_current_image_path() or "No image loaded", elem_id="image_path")
|
| 10 |
+
img = gr.Image(type="filepath", value=get_current_image_path(), label="Blob")
|
| 11 |
+
txt = gr.Textbox(label="Transcription")
|
| 12 |
+
hint = gr.Markdown("*If there are multiple street names in the image, please separate them with commas.*")
|
| 13 |
+
|
| 14 |
+
with gr.Row():
|
| 15 |
+
prev_btn = gr.Button("Previous")
|
| 16 |
+
next_btn = gr.Button("Save & Next")
|
| 17 |
+
del_btn = gr.Button("Delete & Next", variant="stop")
|
| 18 |
+
exit_btn = gr.Button("Save & Exit", variant="secondary")
|
| 19 |
+
|
| 20 |
+
next_btn.click(save_and_next, inputs=txt, outputs=[img, txt, message, image_path_display])
|
| 21 |
+
prev_btn.click(previous_image, outputs=[img, txt, message, image_path_display])
|
| 22 |
+
del_btn.click(delete_and_next, outputs=[img, txt, message, image_path_display])
|
| 23 |
+
exit_btn.click(save_and_exit, inputs=txt, outputs=[img, txt, message, image_path_display])
|
| 24 |
+
|
| 25 |
+
return [message, image_path_display, img, txt, hint, prev_btn, next_btn, del_btn, exit_btn]
|
app.py
CHANGED
|
@@ -1,23 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# setup logging
|
| 5 |
logging.basicConfig(level=logging.DEBUG)
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
def process_image_file(img_file):
|
| 11 |
-
# img_file.name is the path
|
| 12 |
-
img = cv2.imread(img_file.name)
|
| 13 |
-
return f"Shape: {img.shape}"
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
inputs=gr.File(label="Select Image File"),
|
| 18 |
-
outputs="text"
|
| 19 |
-
)
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, inbrowser=False)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import logging
|
| 3 |
+
from inference_tab import get_inference_widgets, run_inference
|
| 4 |
+
from annotation_tab import get_annotation_widgets
|
| 5 |
|
| 6 |
# setup logging
|
| 7 |
logging.basicConfig(level=logging.DEBUG)
|
| 8 |
|
| 9 |
+
with gr.Blocks() as demo:
|
| 10 |
+
with gr.Tab("Inference"):
|
| 11 |
+
get_inference_widgets(run_inference)
|
| 12 |
+
with gr.Tab("Annotation"):
|
| 13 |
+
get_annotation_widgets()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
|
| 17 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, inbrowser=False)
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
|
|
|
inference_tab/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .inference_setup import get_inference_widgets
|
| 2 |
+
from .inference_logic import run_inference
|
| 3 |
+
|
| 4 |
+
__all__ = ["get_inference_widgets", "run_inference"]
|
inference_tab/inference_logic.py
ADDED
|
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from ultralytics import YOLO
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from ultralytics import SAM
|
| 7 |
+
import cv2
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 10 |
+
import rasterio
|
| 11 |
+
import rasterio.features
|
| 12 |
+
from shapely.geometry import shape
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import osmnx as ox
|
| 15 |
+
from osgeo import gdal
|
| 16 |
+
import geopandas as gpd
|
| 17 |
+
from rapidfuzz import process, fuzz
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
yolo_weights = hf_hub_download(
|
| 22 |
+
repo_id="muk42/yolov9_streets",
|
| 23 |
+
filename="yolov9c_finetuned.pt"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def run_inference(image_path, gcp_path, city_name, score_th):
|
| 27 |
+
# ==== TEXT DETECTION ====
|
| 28 |
+
yield from getBBoxes(image_path)
|
| 29 |
+
yield from getSegments(image_path)
|
| 30 |
+
yield from extractSegments(image_path)
|
| 31 |
+
|
| 32 |
+
# === TEXT RECOGNITION ===
|
| 33 |
+
yield from blobsOCR(image_path)
|
| 34 |
+
|
| 35 |
+
# === ADD GEO DATA ===
|
| 36 |
+
yield from georefImg("output/mask.tif", gcp_path)
|
| 37 |
+
yield from extractCentroids(image_path)
|
| 38 |
+
yield from extractStreetNet(city_name)
|
| 39 |
+
|
| 40 |
+
# === POST OCR ===
|
| 41 |
+
for msg in fuzzyMatch():
|
| 42 |
+
if msg.endswith(".csv"):
|
| 43 |
+
yield f"Finished! CSV saved at {msg}", msg
|
| 44 |
+
else:
|
| 45 |
+
yield msg, None
|
| 46 |
+
|
| 47 |
+
return f"Street labels are ready for manual input.\nImage: {image_path}", None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def getBBoxes(image_path, tile_size=256, overlap=0.3, confidence_threshold=0.25):
|
| 52 |
+
yield f"DEBUG: Received image_path: {image_path}"
|
| 53 |
+
image = cv2.imread(image_path)
|
| 54 |
+
H, W, _ = image.shape
|
| 55 |
+
model = YOLO(yolo_weights)
|
| 56 |
+
|
| 57 |
+
step = int(tile_size * (1 - overlap))
|
| 58 |
+
all_detections = []
|
| 59 |
+
|
| 60 |
+
total_tiles = 0
|
| 61 |
+
# Calculate total tiles for progress reporting
|
| 62 |
+
for y in range(0, H, step):
|
| 63 |
+
for x in range(0, W, step):
|
| 64 |
+
# Skip small tiles at the edges
|
| 65 |
+
if y + tile_size > H or x + tile_size > W:
|
| 66 |
+
continue
|
| 67 |
+
total_tiles += 1
|
| 68 |
+
|
| 69 |
+
processed_tiles = 0
|
| 70 |
+
|
| 71 |
+
# Tile the image and run prediction
|
| 72 |
+
for y in range(0, H, step):
|
| 73 |
+
for x in range(0, W, step):
|
| 74 |
+
tile = image[y:y+tile_size, x:x+tile_size]
|
| 75 |
+
|
| 76 |
+
if tile.shape[0] < tile_size or tile.shape[1] < tile_size:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
results = model.predict(source=tile, imgsz=tile_size, conf=confidence_threshold, verbose=False)
|
| 80 |
+
|
| 81 |
+
for result in results:
|
| 82 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
| 83 |
+
scores = result.boxes.conf.cpu().numpy()
|
| 84 |
+
classes = result.boxes.cls.cpu().numpy()
|
| 85 |
+
|
| 86 |
+
for box, score, cls in zip(boxes, scores, classes):
|
| 87 |
+
x1, y1, x2, y2 = box
|
| 88 |
+
# Shift box coordinates relative to full image
|
| 89 |
+
x1 += x
|
| 90 |
+
x2 += x
|
| 91 |
+
y1 += y
|
| 92 |
+
y2 += y
|
| 93 |
+
all_detections.append([x1, y1, x2, y2, score, int(cls)])
|
| 94 |
+
|
| 95 |
+
processed_tiles += 1
|
| 96 |
+
yield f"Processed tile {processed_tiles} of {total_tiles}"
|
| 97 |
+
|
| 98 |
+
# After all tiles are processed, save detections to JSON
|
| 99 |
+
boxes_to_save = [
|
| 100 |
+
{
|
| 101 |
+
"bbox": [float(x1), float(y1), float(x2), float(y2)],
|
| 102 |
+
"score": float(conf),
|
| 103 |
+
"class": int(cls)
|
| 104 |
+
}
|
| 105 |
+
for x1, y1, x2, y2, conf, cls in all_detections
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
output_path = f"output/boxes.json"
|
| 110 |
+
os.makedirs("output", exist_ok=True)
|
| 111 |
+
with open(output_path, "w") as f:
|
| 112 |
+
json.dump(boxes_to_save, f, indent=4)
|
| 113 |
+
|
| 114 |
+
yield f"Inference complete. Results saved to {output_path}"
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def box_inside_global(box, global_box):
|
| 118 |
+
x1, y1, x2, y2 = box
|
| 119 |
+
gx1, gy1, gx2, gy2 = global_box
|
| 120 |
+
return (x1 >= gx1 and y1 >= gy1 and x2 <= gx2 and y2 <= gy2)
|
| 121 |
+
|
| 122 |
+
def nms_iou(box1, box2):
|
| 123 |
+
x1 = max(box1[0], box2[0])
|
| 124 |
+
y1 = max(box1[1], box2[1])
|
| 125 |
+
x2 = min(box1[2], box2[2])
|
| 126 |
+
y2 = min(box1[3], box2[3])
|
| 127 |
+
|
| 128 |
+
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
|
| 129 |
+
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
| 130 |
+
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 131 |
+
union_area = box1_area + box2_area - inter_area
|
| 132 |
+
|
| 133 |
+
return inter_area / union_area if union_area > 0 else 0
|
| 134 |
+
|
| 135 |
+
def non_max_suppression(boxes, scores, iou_threshold=0.5):
|
| 136 |
+
idxs = np.argsort(scores)[::-1]
|
| 137 |
+
keep = []
|
| 138 |
+
|
| 139 |
+
while len(idxs) > 0:
|
| 140 |
+
current = idxs[0]
|
| 141 |
+
keep.append(current)
|
| 142 |
+
idxs = idxs[1:]
|
| 143 |
+
idxs = np.array([i for i in idxs if nms_iou(boxes[current], boxes[i]) < iou_threshold])
|
| 144 |
+
|
| 145 |
+
return keep
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def tile_image_with_overlap(image_path, tile_size=1024, overlap=256):
|
| 150 |
+
"""Tile PDF image into overlapping RGB tiles."""
|
| 151 |
+
image = cv2.imread(image_path)
|
| 152 |
+
height, width, _ = image.shape
|
| 153 |
+
|
| 154 |
+
step = tile_size - overlap
|
| 155 |
+
tile_list = []
|
| 156 |
+
|
| 157 |
+
for y in range(0, height, step):
|
| 158 |
+
for x in range(0, width, step):
|
| 159 |
+
x_end = min(x + tile_size, width)
|
| 160 |
+
y_end = min(y + tile_size, height)
|
| 161 |
+
x_start = max(0, x_end - tile_size)
|
| 162 |
+
y_start = max(0, y_end - tile_size)
|
| 163 |
+
|
| 164 |
+
tile = image[y_start:y_end, x_start:x_end, :]
|
| 165 |
+
tile_list.append((tile, (x_start, y_start)))
|
| 166 |
+
|
| 167 |
+
return tile_list, image.shape
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def compute_iou(box1, box2):
|
| 171 |
+
"""Compute Intersection over Union for two boxes."""
|
| 172 |
+
x1 = max(box1[0], box2[0])
|
| 173 |
+
y1 = max(box1[1], box2[1])
|
| 174 |
+
x2 = min(box1[2], box2[2])
|
| 175 |
+
y2 = min(box1[3], box2[3])
|
| 176 |
+
|
| 177 |
+
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
|
| 178 |
+
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
| 179 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 180 |
+
union_area = area1 + area2 - inter_area
|
| 181 |
+
|
| 182 |
+
return inter_area / union_area if union_area > 0 else 0
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def merge_boxes(boxes, iou_threshold=0.8):
|
| 186 |
+
"""Merge overlapping boxes based on IoU."""
|
| 187 |
+
merged = []
|
| 188 |
+
used = [False] * len(boxes)
|
| 189 |
+
|
| 190 |
+
for i, box in enumerate(boxes):
|
| 191 |
+
if used[i]:
|
| 192 |
+
continue
|
| 193 |
+
group = [box]
|
| 194 |
+
used[i] = True
|
| 195 |
+
for j in range(i + 1, len(boxes)):
|
| 196 |
+
if used[j]:
|
| 197 |
+
continue
|
| 198 |
+
if compute_iou(box, boxes[j]) > iou_threshold:
|
| 199 |
+
group.append(boxes[j])
|
| 200 |
+
used[j] = True
|
| 201 |
+
|
| 202 |
+
# Merge group into one bounding box
|
| 203 |
+
x1 = min(b[0] for b in group)
|
| 204 |
+
y1 = min(b[1] for b in group)
|
| 205 |
+
x2 = max(b[2] for b in group)
|
| 206 |
+
y2 = max(b[3] for b in group)
|
| 207 |
+
merged.append([x1, y1, x2, y2])
|
| 208 |
+
|
| 209 |
+
return merged
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def box_area(box):
|
| 213 |
+
return max(0, box[2] - box[0]) * max(0, box[3] - box[1])
|
| 214 |
+
|
| 215 |
+
def is_contained(box1, box2, containment_threshold=0.9):
|
| 216 |
+
# Check if box1 is mostly inside box2
|
| 217 |
+
x1 = max(box1[0], box2[0])
|
| 218 |
+
y1 = max(box1[1], box2[1])
|
| 219 |
+
x2 = min(box1[2], box2[2])
|
| 220 |
+
y2 = min(box1[3], box2[3])
|
| 221 |
+
|
| 222 |
+
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
|
| 223 |
+
area1 = box_area(box1)
|
| 224 |
+
area2 = box_area(box2)
|
| 225 |
+
|
| 226 |
+
# If intersection covers most of smaller box area, consider contained
|
| 227 |
+
smaller_area = min(area1, area2)
|
| 228 |
+
if smaller_area == 0:
|
| 229 |
+
return False
|
| 230 |
+
return (inter_area / smaller_area) >= containment_threshold
|
| 231 |
+
|
| 232 |
+
def merge_boxes_iterative(boxes, iou_threshold=0.25, containment_threshold=0.75):
|
| 233 |
+
boxes = boxes.copy()
|
| 234 |
+
changed = True
|
| 235 |
+
|
| 236 |
+
while changed:
|
| 237 |
+
changed = False
|
| 238 |
+
merged = []
|
| 239 |
+
used = [False] * len(boxes)
|
| 240 |
+
|
| 241 |
+
for i, box in enumerate(boxes):
|
| 242 |
+
if used[i]:
|
| 243 |
+
continue
|
| 244 |
+
group = [box]
|
| 245 |
+
used[i] = True
|
| 246 |
+
for j in range(i + 1, len(boxes)):
|
| 247 |
+
if used[j]:
|
| 248 |
+
continue
|
| 249 |
+
iou = compute_iou(box, boxes[j])
|
| 250 |
+
contained = is_contained(box, boxes[j], containment_threshold)
|
| 251 |
+
if iou > iou_threshold or contained:
|
| 252 |
+
group.append(boxes[j])
|
| 253 |
+
used[j] = True
|
| 254 |
+
|
| 255 |
+
# Merge group into one bounding box
|
| 256 |
+
x1 = min(b[0] for b in group)
|
| 257 |
+
y1 = min(b[1] for b in group)
|
| 258 |
+
x2 = max(b[2] for b in group)
|
| 259 |
+
y2 = max(b[3] for b in group)
|
| 260 |
+
merged.append([x1, y1, x2, y2])
|
| 261 |
+
|
| 262 |
+
if len(merged) < len(boxes):
|
| 263 |
+
changed = True
|
| 264 |
+
boxes = merged
|
| 265 |
+
|
| 266 |
+
return boxes
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def get_corner_points(box):
|
| 270 |
+
x1, y1, x2, y2 = box
|
| 271 |
+
return [
|
| 272 |
+
[x1, y1], # top-left
|
| 273 |
+
[x2, y1], # top-right
|
| 274 |
+
[x1, y2], # bottom-left
|
| 275 |
+
[x2, y2], # bottom-right
|
| 276 |
+
]
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def sample_negative_points_outside_boxes(mask, num_points):
|
| 280 |
+
points = []
|
| 281 |
+
tries = 0
|
| 282 |
+
max_tries = num_points * 20 # fail-safe to avoid infinite loops
|
| 283 |
+
while len(points) < num_points and tries < max_tries:
|
| 284 |
+
x = np.random.randint(0, mask.shape[1])
|
| 285 |
+
y = np.random.randint(0, mask.shape[0])
|
| 286 |
+
if not mask[y, x]:
|
| 287 |
+
points.append([x, y])
|
| 288 |
+
tries += 1
|
| 289 |
+
return np.array(points)
|
| 290 |
+
|
| 291 |
+
def get_inset_corner_points(box, margin=5):
|
| 292 |
+
x1, y1, x2, y2 = box
|
| 293 |
+
|
| 294 |
+
# Ensure box is large enough for the margin
|
| 295 |
+
x1i = min(x1 + margin, x2)
|
| 296 |
+
y1i = min(y1 + margin, y2)
|
| 297 |
+
x2i = max(x2 - margin, x1)
|
| 298 |
+
y2i = max(y2 - margin, y1)
|
| 299 |
+
|
| 300 |
+
return [
|
| 301 |
+
[x1i, y1i], # top-left (inset)
|
| 302 |
+
[x2i, y1i], # top-right
|
| 303 |
+
[x1i, y2i], # bottom-left
|
| 304 |
+
[x2i, y2i], # bottom-right
|
| 305 |
+
]
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def getSegments(image_path,iou=0.5,c_th=0.75,edge_margin=10):
|
| 309 |
+
"""
|
| 310 |
+
iou for combining bounding boxes
|
| 311 |
+
c_th defined share of the smaller box contained in the larger box for merge
|
| 312 |
+
edge_margin pixel margin for tiles
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
TBD as user input
|
| 316 |
+
# define global bounding box to filter out boxes outside of the main map
|
| 317 |
+
# [COL_MIN, ROW_MIN, COL_MAX, ROW_MAX]
|
| 318 |
+
#GLOBAL_BOX = [211,470,6198,4723]
|
| 319 |
+
"""
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
yield f"Loading SAM model and data..."
|
| 323 |
+
|
| 324 |
+
# Load Ultralytics SAM2.1 model
|
| 325 |
+
model = SAM("sam2.1_l.pt")
|
| 326 |
+
|
| 327 |
+
# Load YOLO-predicted boxes
|
| 328 |
+
with open(f"output/boxes.json", "r") as f:
|
| 329 |
+
box_data = json.load(f)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
# ==== PREPARE BOXES =====
|
| 333 |
+
yield f"Prepare bounding boxes..."
|
| 334 |
+
# Non-max suppression
|
| 335 |
+
boxes = np.array([item["bbox"] for item in box_data])
|
| 336 |
+
scores = np.array([item["score"] for item in box_data])
|
| 337 |
+
# Run NMS
|
| 338 |
+
keep_indices = non_max_suppression(boxes, scores, iou)
|
| 339 |
+
# Filter data
|
| 340 |
+
box_data = [box_data[i] for i in keep_indices]
|
| 341 |
+
# Filter boxes inside global bbox (TBD)
|
| 342 |
+
#box_data = [entry for entry in box_data if box_inside_global(entry["bbox"], GLOBAL_BOX)]
|
| 343 |
+
boxes_full = [b["bbox"] for b in box_data] # Format: [x1, y1, x2, y2]
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
# Tile the image
|
| 347 |
+
yield f"Tile the image..."
|
| 348 |
+
tiles, (full_height, full_width, _) = tile_image_with_overlap(image_path, tile_size=1024, overlap=50)
|
| 349 |
+
|
| 350 |
+
# Prepare full-size mask
|
| 351 |
+
full_mask = np.zeros((full_height, full_width), dtype=np.uint16)
|
| 352 |
+
instance_id = 1
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
yield f"Running predictions..."
|
| 356 |
+
for tile_idx, (tile_array, (x_offset, y_offset)) in enumerate(tiles, desc="Processing Tiles"):
|
| 357 |
+
|
| 358 |
+
tile_height, tile_width, _ = tile_array.shape
|
| 359 |
+
|
| 360 |
+
# Select boxes overlapping this tile
|
| 361 |
+
candidate_boxes = []
|
| 362 |
+
for x1, y1, x2, y2 in boxes_full:
|
| 363 |
+
if (x2 > x_offset) and (x1 < x_offset + tile_width) and (y2 > y_offset) and (y1 < y_offset + tile_height):
|
| 364 |
+
candidate_boxes.append([x1, y1, x2, y2])
|
| 365 |
+
|
| 366 |
+
if not candidate_boxes:
|
| 367 |
+
continue
|
| 368 |
+
|
| 369 |
+
# Merge overlapping boxes
|
| 370 |
+
merged_boxes = merge_boxes_iterative(candidate_boxes, iou_threshold=iou, containment_threshold=c_th)
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# Adjust boxes to tile-local coordinates
|
| 374 |
+
local_boxes = []
|
| 375 |
+
for x1, y1, x2, y2 in merged_boxes:
|
| 376 |
+
new_x1 = max(0, x1 - x_offset)
|
| 377 |
+
new_y1 = max(0, y1 - y_offset)
|
| 378 |
+
new_x2 = min(tile_width, x2 - x_offset)
|
| 379 |
+
new_y2 = min(tile_height, y2 - y_offset)
|
| 380 |
+
local_boxes.append([new_x1, new_y1, new_x2, new_y2])
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
tile_h, tile_w, _ = tile_array.shape
|
| 384 |
+
# Filter local_boxes to remove those too close to the tile edges
|
| 385 |
+
filtered_local_boxes = []
|
| 386 |
+
for box in local_boxes:
|
| 387 |
+
x1, y1, x2, y2 = box
|
| 388 |
+
if (x1 > edge_margin and y1 > edge_margin and (tile_w - x2) > edge_margin and (tile_h - y2) > edge_margin):
|
| 389 |
+
filtered_local_boxes.append(box)
|
| 390 |
+
|
| 391 |
+
local_boxes = filtered_local_boxes
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
if not local_boxes:
|
| 395 |
+
continue
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
# centroids will be positive point prompts as they align well with the text
|
| 400 |
+
centroids = [((bx1 + bx2) / 2, (by1 + by2) / 2) for bx1, by1, bx2, by2 in local_boxes]
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
# [STRATEGY 2] Negative points are within box at the corners
|
| 405 |
+
#negative_points_per_box = [get_corner_points(box) for box in local_boxes]
|
| 406 |
+
# [STRATEGY 3] Negative points are within box at the corners with a bit of a margin
|
| 407 |
+
negative_points_per_box = [get_inset_corner_points(box, margin=2) for box in local_boxes]
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
point_coords = []
|
| 412 |
+
point_labels = []
|
| 413 |
+
|
| 414 |
+
for centroid, neg_points in zip(centroids, negative_points_per_box):
|
| 415 |
+
if not isinstance(neg_points, list):
|
| 416 |
+
neg_points = neg_points.tolist()
|
| 417 |
+
all_points = [centroid] + neg_points
|
| 418 |
+
all_labels = [1] + [0] * len(neg_points)
|
| 419 |
+
|
| 420 |
+
assert len(all_points) == len(all_labels), f"Point-label mismatch: {len(all_points)} vs {len(all_labels)}"
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
point_coords.append(all_points)
|
| 424 |
+
point_labels.append(all_labels)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
results = model(tile_array,
|
| 428 |
+
bboxes=local_boxes,
|
| 429 |
+
points=point_coords,
|
| 430 |
+
labels=point_labels)
|
| 431 |
+
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
yield f"Merging segmentation masks..."
|
| 436 |
+
for result in results:
|
| 437 |
+
if result.masks is None or result.masks.data is None:
|
| 438 |
+
continue
|
| 439 |
+
|
| 440 |
+
# Create a copy of the tile image to overlay masks on
|
| 441 |
+
tile_with_masks = tile_array.copy()
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
for mask in result.masks.data: # each mask: (H, W)
|
| 445 |
+
mask_np = mask.cpu().numpy().astype(bool)
|
| 446 |
+
|
| 447 |
+
# Create a red overlay for the mask
|
| 448 |
+
red_overlay = np.zeros_like(tile_with_masks, dtype=np.uint8)
|
| 449 |
+
red_overlay[..., 0] = 255 # Red channel
|
| 450 |
+
|
| 451 |
+
alpha = 0.5 # Transparency factor
|
| 452 |
+
|
| 453 |
+
# Blend the overlay on the tile where mask is True
|
| 454 |
+
tile_with_masks = np.where(
|
| 455 |
+
mask_np[..., None],
|
| 456 |
+
(1 - alpha) * tile_with_masks + alpha * red_overlay,
|
| 457 |
+
tile_with_masks
|
| 458 |
+
).astype(np.uint8)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
# Paste into full-size canvas
|
| 462 |
+
y1 = y_offset
|
| 463 |
+
y2 = min(y_offset + tile_height, full_height)
|
| 464 |
+
x1 = x_offset
|
| 465 |
+
x2 = min(x_offset + tile_width, full_width)
|
| 466 |
+
|
| 467 |
+
cropped_mask = mask_np[:y2 - y1, :x2 - x1]
|
| 468 |
+
region = full_mask[y1:y2, x1:x2]
|
| 469 |
+
|
| 470 |
+
region[(cropped_mask) & (region == 0)] = instance_id
|
| 471 |
+
instance_id += 1
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
final_mask = Image.fromarray(full_mask)
|
| 477 |
+
final_mask.save(f"output/mask.tif")
|
| 478 |
+
|
| 479 |
+
yield f"Saved mask with {instance_id - 1} instances"
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def extractSegments(image_path, min_size=500, margin=10):
|
| 484 |
+
|
| 485 |
+
image = cv2.imread(image_path)
|
| 486 |
+
mask = cv2.imread(f"output/mask.tif", cv2.IMREAD_UNCHANGED)
|
| 487 |
+
|
| 488 |
+
height, width = mask.shape[:2]
|
| 489 |
+
|
| 490 |
+
# Get unique labels (excluding background label 0)
|
| 491 |
+
blob_ids = np.unique(mask)
|
| 492 |
+
blob_ids = blob_ids[blob_ids != 0]
|
| 493 |
+
|
| 494 |
+
yield f"Found {len(blob_ids)} blobs"
|
| 495 |
+
|
| 496 |
+
for blob_id in blob_ids:
|
| 497 |
+
yield f"Processing blob {blob_id}..."
|
| 498 |
+
# Create a binary mask for the current blob
|
| 499 |
+
blob_mask = (mask == blob_id).astype(np.uint8)
|
| 500 |
+
|
| 501 |
+
# Skip small blobs (WxH)
|
| 502 |
+
if np.sum(blob_mask) < min_size:
|
| 503 |
+
continue
|
| 504 |
+
|
| 505 |
+
# Find bounding box of the blob
|
| 506 |
+
ys, xs = np.where(blob_mask)
|
| 507 |
+
y_min, y_max = ys.min(), ys.max() + 1
|
| 508 |
+
x_min, x_max = xs.min(), xs.max() + 1
|
| 509 |
+
|
| 510 |
+
# Add margin to bounding box while keeping inside image bounds
|
| 511 |
+
x_min = max(0, x_min - margin)
|
| 512 |
+
y_min = max(0, y_min - margin)
|
| 513 |
+
x_max = min(width, x_max + margin)
|
| 514 |
+
y_max = min(height, y_max + margin)
|
| 515 |
+
|
| 516 |
+
# Crop the region from original image
|
| 517 |
+
cropped_image = image[y_min:y_max, x_min:x_max]
|
| 518 |
+
cropped_mask = blob_mask[y_min:y_max, x_min:x_max]
|
| 519 |
+
|
| 520 |
+
# Apply mask to original image
|
| 521 |
+
if image.ndim == 3:
|
| 522 |
+
masked_image = cv2.bitwise_and(cropped_image, cropped_image, mask=cropped_mask)
|
| 523 |
+
else:
|
| 524 |
+
masked_image = cv2.bitwise_and(cropped_image, cropped_image, mask=cropped_mask)
|
| 525 |
+
|
| 526 |
+
# Save the masked image
|
| 527 |
+
output_path = os.path.join('output/blobs', f"{blob_id}.png")
|
| 528 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
| 529 |
+
cv2.imwrite(output_path, masked_image)
|
| 530 |
+
|
| 531 |
+
yield f"Done."
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
def blobsOCR(image_path):
|
| 535 |
+
|
| 536 |
+
# Load model + processor
|
| 537 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-str")
|
| 538 |
+
model = VisionEncoderDecoderModel.from_pretrained("muk42/trocr_streets")
|
| 539 |
+
image_extensions = (".png")
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
# Device setup
|
| 543 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 544 |
+
model.to(device)
|
| 545 |
+
yield f"Running on {device}..."
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
# Open output file for writing
|
| 551 |
+
with open(f"output/ocr", "w", encoding="utf-8") as f_out:
|
| 552 |
+
# Process each image
|
| 553 |
+
image_folder = "output/blobs"
|
| 554 |
+
for filename in os.listdir(image_folder):
|
| 555 |
+
if filename.lower().endswith(image_extensions):
|
| 556 |
+
image_path = os.path.join(image_folder, filename)
|
| 557 |
+
|
| 558 |
+
try:
|
| 559 |
+
image = Image.open(image_path).convert("RGB")
|
| 560 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
| 561 |
+
|
| 562 |
+
generated_ids = model.generate(pixel_values)
|
| 563 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
# Write to file
|
| 567 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
| 568 |
+
f_out.write(f'{name},"{generated_text}"\n')
|
| 569 |
+
yield f"{filename} → {generated_text}"
|
| 570 |
+
|
| 571 |
+
except Exception as e:
|
| 572 |
+
yield f"Error processing {filename}: {e}"
|
| 573 |
+
f_out.write(f"{filename}\tERROR: {e}\n")
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def extractCentroids(image_path):
|
| 578 |
+
|
| 579 |
+
with rasterio.open(f"output/georeferenced.tif") as src:
|
| 580 |
+
mask = src.read(1)
|
| 581 |
+
transform = src.transform
|
| 582 |
+
|
| 583 |
+
labels = np.unique(mask)
|
| 584 |
+
labels = labels[labels != 0]
|
| 585 |
+
|
| 586 |
+
data = []
|
| 587 |
+
|
| 588 |
+
# Generate polygons and their values
|
| 589 |
+
shapes_gen = rasterio.features.shapes(mask, mask=(mask != 0), transform=transform)
|
| 590 |
+
|
| 591 |
+
# Create a dict to collect polygons by label
|
| 592 |
+
polygons_by_label = {}
|
| 593 |
+
|
| 594 |
+
for geom, val in shapes_gen:
|
| 595 |
+
if val == 0:
|
| 596 |
+
continue
|
| 597 |
+
polygons_by_label.setdefault(val, []).append(shape(geom))
|
| 598 |
+
|
| 599 |
+
# For each label, merge polygons and get centroid
|
| 600 |
+
for idx, label in enumerate(labels):
|
| 601 |
+
yield f"Processing {idx+1} out of {len(labels)}"
|
| 602 |
+
polygons = polygons_by_label.get(label)
|
| 603 |
+
if not polygons:
|
| 604 |
+
continue
|
| 605 |
+
|
| 606 |
+
# Merge polygons of the same label (if multiple parts)
|
| 607 |
+
multi_poly = polygons[0]
|
| 608 |
+
for poly in polygons[1:]:
|
| 609 |
+
multi_poly = multi_poly.union(poly)
|
| 610 |
+
|
| 611 |
+
centroid = multi_poly.centroid
|
| 612 |
+
data.append({"blob_id": label, "x": centroid.x, "y": centroid.y})
|
| 613 |
+
|
| 614 |
+
df = pd.DataFrame(data)
|
| 615 |
+
df.to_csv(f"output/centroids.csv", index=False)
|
| 616 |
+
yield f"Saved centroid coordinates of {len(labels)} blobs."
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
def collectBlobs(image_path):
|
| 621 |
+
filename = os.path.splitext(os.path.basename(image_path))[0]
|
| 622 |
+
box_dir = "output/blobs"
|
| 623 |
+
# Get all filenames in the folder (only files, not subfolders)
|
| 624 |
+
file_names = [f for f in os.listdir(box_dir) if os.path.isfile(os.path.join(box_dir, f))]
|
| 625 |
+
|
| 626 |
+
# Save to text file
|
| 627 |
+
with open(f"output/{filename}_blobs.txt", "w") as f:
|
| 628 |
+
for name in file_names:
|
| 629 |
+
yield f"Writing {name}..."
|
| 630 |
+
f.write(name + "\n")
|
| 631 |
+
|
| 632 |
+
def img_shape(image_path):
|
| 633 |
+
img = cv2.imread(image_path)
|
| 634 |
+
return img.shape
|
| 635 |
+
|
| 636 |
+
def georefImg(image_path, gcp_path):
|
| 637 |
+
yield "Reading GCP CSV..."
|
| 638 |
+
df = pd.read_csv(gcp_path)
|
| 639 |
+
|
| 640 |
+
H,W,_ = img_shape(image_path)
|
| 641 |
+
|
| 642 |
+
|
| 643 |
+
# Build GCPs
|
| 644 |
+
gcps = []
|
| 645 |
+
for _, r in df.iterrows():
|
| 646 |
+
gcps.append(
|
| 647 |
+
gdal.GCP(
|
| 648 |
+
float(r['mapX']),
|
| 649 |
+
float(r['mapY']),
|
| 650 |
+
0,
|
| 651 |
+
float(r['sourceX']),
|
| 652 |
+
#H-float(r['sourceY'])
|
| 653 |
+
abs(float(r['sourceY']))
|
| 654 |
+
)
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
tmp_file = "output/tmp.tif"
|
| 660 |
+
|
| 661 |
+
gdal.Translate(
|
| 662 |
+
tmp_file,
|
| 663 |
+
image_path,
|
| 664 |
+
format="GTiff",
|
| 665 |
+
GCPs=gcps,
|
| 666 |
+
outputSRS="EPSG:3857"
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
geo_file = "output/georeferenced.tif"
|
| 672 |
+
yield "Running gdalwarp..."
|
| 673 |
+
|
| 674 |
+
gdal.Warp(
|
| 675 |
+
geo_file,
|
| 676 |
+
tmp_file,
|
| 677 |
+
dstSRS="EPSG:3857",
|
| 678 |
+
resampleAlg="near",
|
| 679 |
+
polynomialOrder=1,
|
| 680 |
+
creationOptions=["COMPRESS=LZW"]
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
yield f"Done."
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
def extractStreetNet(city_name):
|
| 689 |
+
yield f"Extract OSM street network for {city_name}"
|
| 690 |
+
G = ox.graph_from_place(city_name, network_type='drive')
|
| 691 |
+
G_proj = ox.project_graph(G)
|
| 692 |
+
nodes, edges = ox.graph_to_gdfs(G_proj)
|
| 693 |
+
edges_3857 = edges.to_crs(epsg=3857)
|
| 694 |
+
edges_3857.to_file("output/osm_extract.geojson", driver="GeoJSON")
|
| 695 |
+
yield "Done."
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
def best_street_match(point, query_name, edges_gdf, max_distance=100):
|
| 699 |
+
buffer = point.buffer(max_distance)
|
| 700 |
+
nearby_edges = edges_gdf[edges_gdf.intersects(buffer)]
|
| 701 |
+
|
| 702 |
+
if nearby_edges.empty:
|
| 703 |
+
return None, 0
|
| 704 |
+
|
| 705 |
+
candidate_names = nearby_edges['name'].tolist()
|
| 706 |
+
best_match = process.extractOne(query_name, candidate_names, scorer=fuzz.ratio)
|
| 707 |
+
return best_match # (name, score, index)
|
| 708 |
+
|
| 709 |
+
def fuzzyMatch():
|
| 710 |
+
coords_df = pd.read_csv("output/centroids.csv")
|
| 711 |
+
names_df = pd.read_csv("output/ocr.csv",sep="\t",columns=[['blob_id','pred_text']])
|
| 712 |
+
merged_df = coords_df.merge(names_df, on="blob_id")
|
| 713 |
+
|
| 714 |
+
gdf = gpd.GeoDataFrame(
|
| 715 |
+
merged_df,
|
| 716 |
+
geometry=gpd.points_from_xy(merged_df.x, merged_df.y),
|
| 717 |
+
crs="EPSG:3857"
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
osm_gdf = gpd.read_file("output/osm_extract.geojson")
|
| 721 |
+
osm_gdf = osm_gdf[osm_gdf['name'].notnull()]
|
| 722 |
+
|
| 723 |
+
yield "Process OSM candidates..."
|
| 724 |
+
results = []
|
| 725 |
+
for _, row in gdf.iterrows():
|
| 726 |
+
match = best_street_match(row.geometry, row['name'], osm_gdf, max_distance=100)
|
| 727 |
+
if match:
|
| 728 |
+
results.append({
|
| 729 |
+
"blob_id": row.blob_id,
|
| 730 |
+
"x": row.x,
|
| 731 |
+
"y": row.y,
|
| 732 |
+
"blob_name": row.pred_text,
|
| 733 |
+
"best_osm_match": match[0],
|
| 734 |
+
"osm_match_score": match[1]
|
| 735 |
+
})
|
| 736 |
+
else:
|
| 737 |
+
results.append({
|
| 738 |
+
"blob_id": row.blob_id,
|
| 739 |
+
"x": row.x,
|
| 740 |
+
"y": row.y,
|
| 741 |
+
"blob_name": row.pred_text,
|
| 742 |
+
"best_osm_match": None,
|
| 743 |
+
"osm_match_score": 0
|
| 744 |
+
})
|
| 745 |
+
|
| 746 |
+
results_df = pd.DataFrame(results)
|
| 747 |
+
results_df.to_csv("output/street_matches.csv", index=False)
|
| 748 |
+
yield "output/street_matches.csv"
|
inference_tab/inference_setup.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
def get_inference_widgets(run_inference):
|
| 4 |
+
image_input = gr.File(label="Select Image File")
|
| 5 |
+
gcp_input = gr.File(label="Select GCP Points File", file_types=[".points"])
|
| 6 |
+
city_name = gr.Textbox(label="Enter city name")
|
| 7 |
+
score_th = gr.Textbox(label="Enter a score threshold")
|
| 8 |
+
run_button = gr.Button("Run Inference")
|
| 9 |
+
output = gr.Textbox(label="Progress", lines=10, interactive=False)
|
| 10 |
+
download_file = gr.File(label="Download CSV")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
run_button.click(
|
| 14 |
+
run_inference,
|
| 15 |
+
inputs=[image_input, gcp_input, city_name, score_th],
|
| 16 |
+
outputs=[output, download_file]
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
return image_input, gcp_input, city_name, score_th, run_button, output, download_file
|
packages.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libgdal-dev
|
| 2 |
+
gdal-bin
|
requirements.txt
CHANGED
|
@@ -1,3 +1,18 @@
|
|
| 1 |
-
|
| 2 |
-
gradio
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
geopandas==1.0.1
|
| 2 |
+
gradio==5.42.0
|
| 3 |
+
numpy==2.3.2
|
| 4 |
+
opencv_contrib_python==4.10.0.84
|
| 5 |
+
opencv_python==4.10.0.84
|
| 6 |
+
opencv_python_headless==4.10.0.84
|
| 7 |
+
osgeo==0.0.1
|
| 8 |
+
osmnx==2.0.6
|
| 9 |
+
pandas==2.3.1
|
| 10 |
+
Pillow==10.0.0
|
| 11 |
+
Pillow==11.3.0
|
| 12 |
+
rapidfuzz==3.13.0
|
| 13 |
+
rasterio==1.4.3
|
| 14 |
+
Shapely==2.1.1
|
| 15 |
+
torch==2.7.1+cu128
|
| 16 |
+
transformers==4.53.2
|
| 17 |
+
ultralytics==8.3.94
|
| 18 |
+
GDAL==3.7.0
|