Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| from diffusers import AuraFlowPipeline | |
| import torch | |
| from gradio_imageslider import ImageSlider | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #torch.set_float32_matmul_precision("high") | |
| #torch._inductor.config.conv_1x1_as_mm = True | |
| #torch._inductor.config.coordinate_descent_tuning = True | |
| #torch._inductor.config.epilogue_fusion = False | |
| #torch._inductor.config.coordinate_descent_check_all_directions = True | |
| #pipe_v1 = AuraFlowPipeline.from_pretrained( | |
| # "fal/AuraFlow", | |
| # torch_dtype=torch.float16 | |
| #).to("cuda") | |
| pipe_v2 = AuraFlowPipeline.from_pretrained( | |
| "fal/AuraFlow-v0.2", | |
| torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe = AuraFlowPipeline.from_pretrained( | |
| "fal/AuraFlow-v0.3", | |
| torch_dtype=torch.float16 | |
| ).to("cuda") | |
| #pipe.transformer.to(memory_format=torch.channels_last) | |
| #pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) | |
| #pipe.transformer.to(memory_format=torch.channels_last) | |
| #pipe.vae.to(memory_format=torch.channels_last) | |
| #pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
| #pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)): | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width = width, | |
| height = height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| return image, seed | |
| def infer(prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=5.0, | |
| num_inference_steps=28, | |
| model_version="0.3", | |
| comparison_mode=False, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if(comparison_mode): | |
| image_1 = pipe_v2( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| generator = torch.Generator().manual_seed(seed) | |
| image_2 = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed | |
| if(model_version == "0.1"): | |
| image = pipe_v1( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| elif(model_version == "0.2"): | |
| image = pipe_v2( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| else: | |
| image = pipe( | |
| prompt = prompt, | |
| negative_prompt = negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale = guidance_scale, | |
| num_inference_steps = num_inference_steps, | |
| generator = generator | |
| ).images[0] | |
| return gr.update(visible=True, value=image), gr.update(visible=False), seed | |
| examples = [ | |
| "A photo of a lavender cat", | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # AuraFlow 0.3 | |
| Demo of the [AuraFlow 0.3](https://huggingface.co/fal/AuraFlow-v0.3) 6.8B parameters open source diffusion transformer model | |
| [[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)] | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| result_compare = ImageSlider(visible=False, label="Left 0.2, Right 0.3") | |
| comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| model_version = gr.Dropdown( | |
| ["0.2", "0.3"], label="Model version", value="0.3" | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=5.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| gr.Examples( | |
| examples = examples, | |
| fn = infer_example, | |
| inputs = [prompt], | |
| outputs = [result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
| fn = infer, | |
| inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_version, comparison_mode], | |
| outputs = [result, result_compare, seed] | |
| ) | |
| demo.queue().launch() |