Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
from diffusers import
|
| 5 |
import torch
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
-
pipe =
|
|
|
|
| 12 |
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
pipe = pipe.to(device)
|
| 14 |
else:
|
|
@@ -103,7 +104,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 103 |
minimum=256,
|
| 104 |
maximum=MAX_IMAGE_SIZE,
|
| 105 |
step=32,
|
| 106 |
-
value=
|
| 107 |
)
|
| 108 |
|
| 109 |
height = gr.Slider(
|
|
@@ -111,7 +112,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 111 |
minimum=256,
|
| 112 |
maximum=MAX_IMAGE_SIZE,
|
| 113 |
step=32,
|
| 114 |
-
value=
|
| 115 |
)
|
| 116 |
|
| 117 |
with gr.Row():
|
|
@@ -121,15 +122,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 121 |
minimum=0.0,
|
| 122 |
maximum=10.0,
|
| 123 |
step=0.1,
|
| 124 |
-
value=
|
| 125 |
)
|
| 126 |
|
| 127 |
num_inference_steps = gr.Slider(
|
| 128 |
label="Number of inference steps",
|
| 129 |
minimum=1,
|
| 130 |
-
maximum=
|
| 131 |
step=1,
|
| 132 |
-
value=
|
| 133 |
)
|
| 134 |
|
| 135 |
gr.Examples(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
from diffusers import AuraFlowPipeline
|
| 5 |
import torch
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
+
pipe = AuraFlowPipeline.from_pretrained("AuraDiffusion/auradiffusion-v0.1a0",
|
| 12 |
+
torch_dtype=torch.float16)
|
| 13 |
pipe.enable_xformers_memory_efficient_attention()
|
| 14 |
pipe = pipe.to(device)
|
| 15 |
else:
|
|
|
|
| 104 |
minimum=256,
|
| 105 |
maximum=MAX_IMAGE_SIZE,
|
| 106 |
step=32,
|
| 107 |
+
value=1024,
|
| 108 |
)
|
| 109 |
|
| 110 |
height = gr.Slider(
|
|
|
|
| 112 |
minimum=256,
|
| 113 |
maximum=MAX_IMAGE_SIZE,
|
| 114 |
step=32,
|
| 115 |
+
value=1024,
|
| 116 |
)
|
| 117 |
|
| 118 |
with gr.Row():
|
|
|
|
| 122 |
minimum=0.0,
|
| 123 |
maximum=10.0,
|
| 124 |
step=0.1,
|
| 125 |
+
value=5.0,
|
| 126 |
)
|
| 127 |
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
label="Number of inference steps",
|
| 130 |
minimum=1,
|
| 131 |
+
maximum=50,
|
| 132 |
step=1,
|
| 133 |
+
value=50,
|
| 134 |
)
|
| 135 |
|
| 136 |
gr.Examples(
|