Spaces:
Runtime error
Runtime error
| # Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from enum import Enum | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from transformers import ( | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| ) | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| ControlNetUnionModel, | |
| MultiControlNetModel, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.models.attention_processor import ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| ) | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.import_utils import is_invisible_watermark_available | |
| from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
| if is_invisible_watermark_available(): | |
| from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
| from diffusers.utils import is_torch_xla_available | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| import torch | |
| from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler | |
| from diffusers.utils import load_image | |
| from PIL import Image | |
| device = "cuda" | |
| # Initialize the models and pipeline | |
| controlnet = ControlNetUnionModel.from_pretrained( | |
| "brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16 | |
| ).to(device=device) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device) | |
| model_id = "SG161222/RealVisXL_V5.0" | |
| pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained( | |
| model_id, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" | |
| ).to(device) | |
| pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM | |
| pipe.enable_vae_tiling() # << Enable this if you have limited VRAM | |
| pipe.enable_vae_slicing() # << Enable this if you have limited VRAM | |
| # Set selected scheduler | |
| pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
| # Load image | |
| control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg") | |
| original_height = control_image.height | |
| original_width = control_image.width | |
| print(f"Current resolution: H:{original_height} x W:{original_width}") | |
| # Pre-upscale image for tiling | |
| resolution = 4096 | |
| tile_gaussian_sigma = 0.3 | |
| max_tile_size = 1024 # or 1280 | |
| current_size = max(control_image.size) | |
| scale_factor = max(2, resolution / current_size) | |
| new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor)) | |
| image = control_image.resize(new_size, Image.LANCZOS) | |
| # Update target height and width | |
| target_height = image.height | |
| target_width = image.width | |
| print(f"Target resolution: H:{target_height} x W:{target_width}") | |
| # Calculate overlap size | |
| normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height) | |
| # Set other params | |
| tile_weighting_method = TileWeightingMethod.COSINE.value | |
| guidance_scale = 4 | |
| num_inference_steps = 35 | |
| denoising_strenght = 0.65 | |
| controlnet_strength = 1.0 | |
| prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k" | |
| negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details" | |
| # Image generation | |
| control_image = pipe( | |
| image=image, | |
| control_image=control_image, | |
| control_mode=[6], | |
| controlnet_conditioning_scale=float(controlnet_strength), | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| normal_tile_overlap=normal_tile_overlap, | |
| border_tile_overlap=border_tile_overlap, | |
| height=target_height, | |
| width=target_width, | |
| original_size=(original_width, original_height), | |
| target_size=(target_width, target_height), | |
| guidance_scale=guidance_scale, | |
| strength=float(denoising_strenght), | |
| tile_weighting_method=tile_weighting_method, | |
| max_tile_size=max_tile_size, | |
| tile_gaussian_sigma=float(tile_gaussian_sigma), | |
| num_inference_steps=num_inference_steps, | |
| )["images"][0] | |
| ``` | |
| """ | |
| # This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0. | |
| def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280): | |
| """ | |
| Calculate the adaptive tile size based on the image dimensions, ensuring the tile | |
| respects the aspect ratio and stays within the specified size limits. | |
| """ | |
| width, height = image_size | |
| aspect_ratio = width / height | |
| if aspect_ratio > 1: | |
| # Landscape orientation | |
| tile_width = min(width, max_tile_size) | |
| tile_height = min(int(tile_width / aspect_ratio), max_tile_size) | |
| else: | |
| # Portrait or square orientation | |
| tile_height = min(height, max_tile_size) | |
| tile_width = min(int(tile_height * aspect_ratio), max_tile_size) | |
| # Ensure the tile size is not smaller than the base_tile_size | |
| tile_width = max(tile_width, base_tile_size) | |
| tile_height = max(tile_height, base_tile_size) | |
| return tile_width, tile_height | |
| # Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py | |
| def _tile2pixel_indices( | |
| tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height | |
| ): | |
| """Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image | |
| Returns a tuple with: | |
| - Starting coordinates of rows in pixel space | |
| - Ending coordinates of rows in pixel space | |
| - Starting coordinates of columns in pixel space | |
| - Ending coordinates of columns in pixel space | |
| """ | |
| # Calculate initial indices | |
| px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap) | |
| px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap) | |
| # Calculate end indices | |
| px_row_end = px_row_init + tile_height | |
| px_col_end = px_col_init + tile_width | |
| # Ensure the last tile does not exceed the image dimensions | |
| px_row_end = min(px_row_end, image_height) | |
| px_col_end = min(px_col_end, image_width) | |
| return px_row_init, px_row_end, px_col_init, px_col_end | |
| # Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py | |
| def _tile2latent_indices( | |
| tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height | |
| ): | |
| """Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image | |
| Returns a tuple with: | |
| - Starting coordinates of rows in latent space | |
| - Ending coordinates of rows in latent space | |
| - Starting coordinates of columns in latent space | |
| - Ending coordinates of columns in latent space | |
| """ | |
| # Get pixel indices | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( | |
| tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height | |
| ) | |
| # Convert to latent space | |
| latent_row_init = px_row_init // 8 | |
| latent_row_end = px_row_end // 8 | |
| latent_col_init = px_col_init // 8 | |
| latent_col_end = px_col_end // 8 | |
| latent_height = image_height // 8 | |
| latent_width = image_width // 8 | |
| # Ensure the last tile does not exceed the latent dimensions | |
| latent_row_end = min(latent_row_end, latent_height) | |
| latent_col_end = min(latent_col_end, latent_width) | |
| return latent_row_init, latent_row_end, latent_col_init, latent_col_end | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| class StableDiffusionXLControlNetTileSRPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| TextualInversionLoaderMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| FromSingleFileMixin, | |
| ): | |
| r""" | |
| Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
| Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
| specifically the | |
| [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
| variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| tokenizer_2 (`CLIPTokenizer`): | |
| Second Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| controlnet ([`ControlNetUnionModel`]): | |
| Provides additional conditioning to the unet during the denoising process. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`): | |
| Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the | |
| config of `stabilityai/stable-diffusion-xl-refiner-1-0`. | |
| force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
| Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | |
| `stabilityai/stable-diffusion-xl-base-1-0`. | |
| add_watermarker (`bool`, *optional*): | |
| Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to | |
| watermark output images. If not defined, it will default to True if the package is installed, otherwise no | |
| watermarker will be used. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| ] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| controlnet: ControlNetUnionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| requires_aesthetics_score: bool = False, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| ): | |
| super().__init__() | |
| if not isinstance(controlnet, ControlNetUnionModel): | |
| raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.") | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
| ) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True | |
| ) | |
| add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
| if add_watermarker: | |
| self.watermark = StableDiffusionXLWatermarker() | |
| else: | |
| self.watermark = None | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) | |
| def calculate_overlap(self, width, height, base_overlap=128): | |
| """ | |
| Calculates dynamic overlap based on the image's aspect ratio. | |
| Args: | |
| width (int): Width of the image in pixels. | |
| height (int): Height of the image in pixels. | |
| base_overlap (int, optional): Base overlap value in pixels. Defaults to 128. | |
| Returns: | |
| tuple: A tuple containing: | |
| - row_overlap (int): Overlap between tiles in consecutive rows. | |
| - col_overlap (int): Overlap between tiles in consecutive columns. | |
| """ | |
| ratio = height / width | |
| if ratio < 1: # Image is wider than tall | |
| return base_overlap // 2, base_overlap | |
| else: # Image is taller than wide | |
| return base_overlap, base_overlap * 2 | |
| class TileWeightingMethod(Enum): | |
| """Mode in which the tile weights will be generated""" | |
| COSINE = "Cosine" | |
| GAUSSIAN = "Gaussian" | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| prompt_2: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| dtype = text_encoders[0].dtype | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # textual inversion: process multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_encoder.to(dtype) | |
| prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2: | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| if clip_skip is None: | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| else: | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
| if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| # normalize str to list | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_prompt_2 = ( | |
| batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
| ) | |
| uncond_tokens: List[str] | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2: | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| if self.text_encoder_2 is not None: | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| if self.text_encoder_2 is not None: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| image, | |
| strength, | |
| num_inference_steps, | |
| normal_tile_overlap, | |
| border_tile_overlap, | |
| max_tile_size, | |
| tile_gaussian_sigma, | |
| tile_weighting_method, | |
| controlnet_conditioning_scale=1.0, | |
| control_guidance_start=0.0, | |
| control_guidance_end=1.0, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if strength < 0 or strength > 1: | |
| raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
| if num_inference_steps is None: | |
| raise ValueError("`num_inference_steps` cannot be None.") | |
| elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: | |
| raise ValueError( | |
| f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" | |
| f" {type(num_inference_steps)}." | |
| ) | |
| if normal_tile_overlap is None: | |
| raise ValueError("`normal_tile_overlap` cannot be None.") | |
| elif not isinstance(normal_tile_overlap, int) or normal_tile_overlap < 64: | |
| raise ValueError( | |
| f"`normal_tile_overlap` has to be greater than 64 but is {normal_tile_overlap} of type" | |
| f" {type(normal_tile_overlap)}." | |
| ) | |
| if border_tile_overlap is None: | |
| raise ValueError("`border_tile_overlap` cannot be None.") | |
| elif not isinstance(border_tile_overlap, int) or border_tile_overlap < 128: | |
| raise ValueError( | |
| f"`border_tile_overlap` has to be greater than 128 but is {border_tile_overlap} of type" | |
| f" {type(border_tile_overlap)}." | |
| ) | |
| if max_tile_size is None: | |
| raise ValueError("`max_tile_size` cannot be None.") | |
| elif not isinstance(max_tile_size, int) or max_tile_size not in (1024, 1280): | |
| raise ValueError( | |
| f"`max_tile_size` has to be in 1024 or 1280 but is {max_tile_size} of type {type(max_tile_size)}." | |
| ) | |
| if tile_gaussian_sigma is None: | |
| raise ValueError("`tile_gaussian_sigma` cannot be None.") | |
| elif not isinstance(tile_gaussian_sigma, float) or tile_gaussian_sigma <= 0: | |
| raise ValueError( | |
| f"`tile_gaussian_sigma` has to be a positive float but is {tile_gaussian_sigma} of type" | |
| f" {type(tile_gaussian_sigma)}." | |
| ) | |
| if tile_weighting_method is None: | |
| raise ValueError("`tile_weighting_method` cannot be None.") | |
| elif not isinstance(tile_weighting_method, str) or tile_weighting_method not in [ | |
| t.value for t in self.TileWeightingMethod | |
| ]: | |
| raise ValueError( | |
| f"`tile_weighting_method` has to be a string in ({[t.value for t in self.TileWeightingMethod]}) but is {tile_weighting_method} of type" | |
| f" {type(tile_weighting_method)}." | |
| ) | |
| # Check `image` | |
| is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
| self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
| ) | |
| if ( | |
| isinstance(self.controlnet, ControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
| ): | |
| self.check_image(image, prompt) | |
| elif ( | |
| isinstance(self.controlnet, ControlNetUnionModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetUnionModel) | |
| ): | |
| self.check_image(image, prompt) | |
| else: | |
| assert False | |
| # Check `controlnet_conditioning_scale` | |
| if ( | |
| isinstance(self.controlnet, ControlNetUnionModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetUnionModel) | |
| ) or ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if not isinstance(controlnet_conditioning_scale, float): | |
| raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
| elif ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if isinstance(controlnet_conditioning_scale, list): | |
| if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
| self.controlnet.nets | |
| ): | |
| raise ValueError( | |
| "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
| " the same length as the number of controlnets" | |
| ) | |
| else: | |
| assert False | |
| if not isinstance(control_guidance_start, (tuple, list)): | |
| control_guidance_start = [control_guidance_start] | |
| if not isinstance(control_guidance_end, (tuple, list)): | |
| control_guidance_end = [control_guidance_end] | |
| if len(control_guidance_start) != len(control_guidance_end): | |
| raise ValueError( | |
| f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
| ) | |
| for start, end in zip(control_guidance_start, control_guidance_end): | |
| if start >= end: | |
| raise ValueError( | |
| f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
| ) | |
| if start < 0.0: | |
| raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
| if end > 1.0: | |
| raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
| # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image | |
| def check_image(self, image, prompt): | |
| image_is_pil = isinstance(image, Image.Image) | |
| image_is_tensor = isinstance(image, torch.Tensor) | |
| image_is_np = isinstance(image, np.ndarray) | |
| image_is_pil_list = isinstance(image, list) and isinstance(image[0], Image.Image) | |
| image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
| image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
| if ( | |
| not image_is_pil | |
| and not image_is_tensor | |
| and not image_is_np | |
| and not image_is_pil_list | |
| and not image_is_tensor_list | |
| and not image_is_np_list | |
| ): | |
| raise TypeError( | |
| f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
| ) | |
| if image_is_pil: | |
| image_batch_size = 1 | |
| else: | |
| image_batch_size = len(image) | |
| if prompt is not None and isinstance(prompt, str): | |
| prompt_batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| prompt_batch_size = len(prompt) | |
| if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image | |
| def prepare_control_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| if hasattr(self.scheduler, "set_begin_index"): | |
| self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
| return timesteps, num_inference_steps - t_start | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents | |
| def prepare_latents( | |
| self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True | |
| ): | |
| if not isinstance(image, (torch.Tensor, Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| latents_mean = latents_std = None | |
| if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None: | |
| latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) | |
| if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None: | |
| latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) | |
| # Offload text encoder if `enable_model_cpu_offload` was enabled | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.text_encoder_2.to("cpu") | |
| torch.cuda.empty_cache() | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| if image.shape[0] < batch_size and batch_size % image.shape[0] == 0: | |
| image = torch.cat([image] * (batch_size // image.shape[0]), dim=0) | |
| elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} " | |
| ) | |
| init_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| if latents_mean is not None and latents_std is not None: | |
| latents_mean = latents_mean.to(device=device, dtype=dtype) | |
| latents_std = latents_std.to(device=device, dtype=dtype) | |
| init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std | |
| else: | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: | |
| # expand init_latents for batch_size | |
| additional_image_per_prompt = batch_size // init_latents.shape[0] | |
| init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) | |
| elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: | |
| raise ValueError( | |
| f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." | |
| ) | |
| else: | |
| init_latents = torch.cat([init_latents], dim=0) | |
| if add_noise: | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids | |
| def _get_add_time_ids( | |
| self, | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype, | |
| text_encoder_projection_dim=None, | |
| ): | |
| if self.config.requires_aesthetics_score: | |
| add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | |
| add_neg_time_ids = list( | |
| negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,) | |
| ) | |
| else: | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if ( | |
| expected_add_embed_dim > passed_add_embed_dim | |
| and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." | |
| ) | |
| elif ( | |
| expected_add_embed_dim < passed_add_embed_dim | |
| and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." | |
| ) | |
| elif expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) | |
| return add_time_ids, add_neg_time_ids | |
| def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype): | |
| """ | |
| Generates cosine weights as a PyTorch tensor for blending tiles. | |
| Args: | |
| tile_width (int): Width of the tile in pixels. | |
| tile_height (int): Height of the tile in pixels. | |
| nbatches (int): Number of batches. | |
| device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu'). | |
| dtype (torch.dtype): Data type of the tensor (e.g., torch.float32). | |
| Returns: | |
| torch.Tensor: A tensor containing cosine weights for blending tiles, expanded to match batch and channel dimensions. | |
| """ | |
| # Convert tile dimensions to latent space | |
| latent_width = tile_width // 8 | |
| latent_height = tile_height // 8 | |
| # Generate x and y coordinates in latent space | |
| x = np.arange(0, latent_width) | |
| y = np.arange(0, latent_height) | |
| # Calculate midpoints | |
| midpoint_x = (latent_width - 1) / 2 | |
| midpoint_y = (latent_height - 1) / 2 | |
| # Compute cosine probabilities for x and y | |
| x_probs = np.cos(np.pi * (x - midpoint_x) / latent_width) | |
| y_probs = np.cos(np.pi * (y - midpoint_y) / latent_height) | |
| # Create a 2D weight matrix using the outer product | |
| weights_np = np.outer(y_probs, x_probs) | |
| # Convert to a PyTorch tensor with the correct device and dtype | |
| weights_torch = torch.tensor(weights_np, device=device, dtype=dtype) | |
| # Expand for batch and channel dimensions | |
| tile_weights_expanded = torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1)) | |
| return tile_weights_expanded | |
| def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.05): | |
| """ | |
| Generates Gaussian weights as a PyTorch tensor for blending tiles in latent space. | |
| Args: | |
| tile_width (int): Width of the tile in pixels. | |
| tile_height (int): Height of the tile in pixels. | |
| nbatches (int): Number of batches. | |
| device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu'). | |
| dtype (torch.dtype): Data type of the tensor (e.g., torch.float32). | |
| sigma (float, optional): Standard deviation of the Gaussian distribution. Controls the smoothness of the weights. Defaults to 0.05. | |
| Returns: | |
| torch.Tensor: A tensor containing Gaussian weights for blending tiles, expanded to match batch and channel dimensions. | |
| """ | |
| # Convert tile dimensions to latent space | |
| latent_width = tile_width // 8 | |
| latent_height = tile_height // 8 | |
| # Generate Gaussian weights in latent space | |
| x = np.linspace(-1, 1, latent_width) | |
| y = np.linspace(-1, 1, latent_height) | |
| xx, yy = np.meshgrid(x, y) | |
| gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2)) | |
| # Convert to a PyTorch tensor with the correct device and dtype | |
| weights_torch = torch.tensor(gaussian_weight, device=device, dtype=dtype) | |
| # Expand for batch and channel dimensions | |
| weights_expanded = weights_torch.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions | |
| weights_expanded = weights_expanded.expand(nbatches, -1, -1, -1) # Expand to the number of batches | |
| return weights_expanded | |
| def _get_num_tiles(self, height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap): | |
| """ | |
| Calculates the number of tiles needed to cover an image, choosing the appropriate formula based on the | |
| ratio between the image size and the tile size. | |
| This function automatically selects between two formulas: | |
| 1. A universal formula for typical cases (image-to-tile ratio <= 6:1). | |
| 2. A specialized formula with border tile overlap for larger or atypical cases (image-to-tile ratio > 6:1). | |
| Args: | |
| height (int): Height of the image in pixels. | |
| width (int): Width of the image in pixels. | |
| tile_height (int): Height of each tile in pixels. | |
| tile_width (int): Width of each tile in pixels. | |
| normal_tile_overlap (int): Overlap between tiles in pixels for normal (non-border) tiles. | |
| border_tile_overlap (int): Overlap between tiles in pixels for border tiles. | |
| Returns: | |
| tuple: A tuple containing: | |
| - grid_rows (int): Number of rows in the tile grid. | |
| - grid_cols (int): Number of columns in the tile grid. | |
| Notes: | |
| - The function uses the universal formula (without border_tile_overlap) for typical cases where the | |
| image-to-tile ratio is 6:1 or smaller. | |
| - For larger or atypical cases (image-to-tile ratio > 6:1), it uses a specialized formula that includes | |
| border_tile_overlap to ensure complete coverage of the image, especially at the edges. | |
| """ | |
| # Calculate the ratio between the image size and the tile size | |
| height_ratio = height / tile_height | |
| width_ratio = width / tile_width | |
| # If the ratio is greater than 6:1, use the formula with border_tile_overlap | |
| if height_ratio > 6 or width_ratio > 6: | |
| grid_rows = int(np.ceil((height - border_tile_overlap) / (tile_height - normal_tile_overlap))) + 1 | |
| grid_cols = int(np.ceil((width - border_tile_overlap) / (tile_width - normal_tile_overlap))) + 1 | |
| else: | |
| # Otherwise, use the universal formula | |
| grid_rows = int(np.ceil((height - normal_tile_overlap) / (tile_height - normal_tile_overlap))) | |
| grid_cols = int(np.ceil((width - normal_tile_overlap) / (tile_width - normal_tile_overlap))) | |
| return grid_rows, grid_cols | |
| def prepare_tiles( | |
| self, | |
| grid_rows, | |
| grid_cols, | |
| tile_weighting_method, | |
| tile_width, | |
| tile_height, | |
| normal_tile_overlap, | |
| border_tile_overlap, | |
| width, | |
| height, | |
| tile_sigma, | |
| batch_size, | |
| device, | |
| dtype, | |
| ): | |
| """ | |
| Processes image tiles by dynamically adjusting overlap and calculating Gaussian or cosine weights. | |
| Args: | |
| grid_rows (int): Number of rows in the tile grid. | |
| grid_cols (int): Number of columns in the tile grid. | |
| tile_weighting_method (str): Method for weighting tiles. Options: "Gaussian" or "Cosine". | |
| tile_width (int): Width of each tile in pixels. | |
| tile_height (int): Height of each tile in pixels. | |
| normal_tile_overlap (int): Overlap between tiles in pixels for normal tiles. | |
| border_tile_overlap (int): Overlap between tiles in pixels for border tiles. | |
| width (int): Width of the image in pixels. | |
| height (int): Height of the image in pixels. | |
| tile_sigma (float): Sigma parameter for Gaussian weighting. | |
| batch_size (int): Batch size for weight tiles. | |
| device (torch.device): Device where tensors will be allocated (e.g., 'cuda' or 'cpu'). | |
| dtype (torch.dtype): Data type of the tensors (e.g., torch.float32). | |
| Returns: | |
| tuple: A tuple containing: | |
| - tile_weights (np.ndarray): Array of weights for each tile. | |
| - tile_row_overlaps (np.ndarray): Array of row overlaps for each tile. | |
| - tile_col_overlaps (np.ndarray): Array of column overlaps for each tile. | |
| """ | |
| # Create arrays to store dynamic overlaps and weights | |
| tile_row_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap) | |
| tile_col_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap) | |
| tile_weights = np.empty((grid_rows, grid_cols), dtype=object) # Stores Gaussian or cosine weights | |
| # Iterate over tiles to adjust overlap and calculate weights | |
| for row in range(grid_rows): | |
| for col in range(grid_cols): | |
| # Calculate the size of the current tile | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( | |
| row, col, tile_width, tile_height, normal_tile_overlap, normal_tile_overlap, width, height | |
| ) | |
| current_tile_width = px_col_end - px_col_init | |
| current_tile_height = px_row_end - px_row_init | |
| sigma = tile_sigma | |
| # Adjust overlap for smaller tiles | |
| if current_tile_width < tile_width: | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( | |
| row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height | |
| ) | |
| current_tile_width = px_col_end - px_col_init | |
| tile_col_overlaps[row, col] = border_tile_overlap | |
| sigma = tile_sigma * 1.2 | |
| if current_tile_height < tile_height: | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices( | |
| row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height | |
| ) | |
| current_tile_height = px_row_end - px_row_init | |
| tile_row_overlaps[row, col] = border_tile_overlap | |
| sigma = tile_sigma * 1.2 | |
| # Calculate weights for the current tile | |
| if tile_weighting_method == self.TileWeightingMethod.COSINE.value: | |
| tile_weights[row, col] = self._generate_cosine_weights( | |
| tile_width=current_tile_width, | |
| tile_height=current_tile_height, | |
| nbatches=batch_size, | |
| device=device, | |
| dtype=torch.float32, | |
| ) | |
| else: | |
| tile_weights[row, col] = self._generate_gaussian_weights( | |
| tile_width=current_tile_width, | |
| tile_height=current_tile_height, | |
| nbatches=batch_size, | |
| device=device, | |
| dtype=dtype, | |
| sigma=sigma, | |
| ) | |
| return tile_weights, tile_row_overlaps, tile_col_overlaps | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| ), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def cross_attention_kwargs(self): | |
| return self._cross_attention_kwargs | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| control_image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.9999, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| controlnet_conditioning_scale: Union[float, List[float]] = 1.0, | |
| guess_mode: bool = False, | |
| control_guidance_start: Union[float, List[float]] = 0.0, | |
| control_guidance_end: Union[float, List[float]] = 1.0, | |
| control_mode: Optional[Union[int, List[int]]] = None, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| aesthetic_score: float = 6.0, | |
| negative_aesthetic_score: float = 2.5, | |
| clip_skip: Optional[int] = None, | |
| normal_tile_overlap: int = 64, | |
| border_tile_overlap: int = 128, | |
| max_tile_size: int = 1024, | |
| tile_gaussian_sigma: float = 0.05, | |
| tile_weighting_method: str = "Cosine", | |
| **kwargs, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, *optional*): | |
| The initial image to be used as the starting point for the image generation process. Can also accept | |
| image latents as `image`, if passing latents directly, they will not be encoded again. | |
| control_image (`PipelineImageInput`, *optional*): | |
| The ControlNet input condition. ControlNet uses this input condition to generate guidance for Unet. | |
| If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also | |
| be accepted as an image. The dimensions of the output image default to `image`'s dimensions. If height | |
| and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
| init, images must be passed as a list such that each element of the list can be correctly batched for | |
| input to a single ControlNet. | |
| height (`int`, *optional*): | |
| The height in pixels of the generated image. If not provided, defaults to the height of `control_image`. | |
| width (`int`, *optional*): | |
| The width in pixels of the generated image. If not provided, defaults to the width of `control_image`. | |
| strength (`float`, *optional*, defaults to 0.9999): | |
| Indicates the extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point, and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum, and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487). | |
| Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating | |
| images closely linked to the text `prompt`, usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will be generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): | |
| `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
| to the residual in the original UNet. If multiple ControlNets are specified in init, you can set the | |
| corresponding scale as a list. | |
| guess_mode (`bool`, *optional*, defaults to `False`): | |
| In this mode, the ControlNet encoder will try to recognize the content of the input image even if | |
| you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. | |
| control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
| The percentage of total steps at which the ControlNet starts applying. | |
| control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The percentage of total steps at which the ControlNet stops applying. | |
| control_mode (`int` or `List[int]`, *optional*): | |
| The mode of ControlNet guidance. Can be used to specify different behaviors for multiple ControlNets. | |
| original_size (`Tuple[int, int]`, *optional*): | |
| If `original_size` is not the same as `target_size`, the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning. | |
| crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning. | |
| target_size (`Tuple[int, int]`, *optional*): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified, it will default to `(height, width)`. Part of SDXL's micro-conditioning. | |
| negative_original_size (`Tuple[int, int]`, *optional*): | |
| To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
| micro-conditioning. | |
| negative_crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)): | |
| To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
| micro-conditioning. | |
| negative_target_size (`Tuple[int, int]`, *optional*): | |
| To negatively condition the generation process based on a target image resolution. It should be the same | |
| as the `target_size` for most cases. Part of SDXL's micro-conditioning. | |
| aesthetic_score (`float`, *optional*, defaults to 6.0): | |
| Used to simulate an aesthetic score of the generated image by influencing the positive text condition. | |
| Part of SDXL's micro-conditioning. | |
| negative_aesthetic_score (`float`, *optional*, defaults to 2.5): | |
| Used to simulate an aesthetic score of the generated image by influencing the negative text condition. | |
| Part of SDXL's micro-conditioning. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| normal_tile_overlap (`int`, *optional*, defaults to 64): | |
| Number of overlapping pixels between tiles in consecutive rows. | |
| border_tile_overlap (`int`, *optional*, defaults to 128): | |
| Number of overlapping pixels between tiles at the borders. | |
| max_tile_size (`int`, *optional*, defaults to 1024): | |
| Maximum size of a tile in pixels. | |
| tile_gaussian_sigma (`float`, *optional*, defaults to 0.3): | |
| Sigma parameter for Gaussian weighting of tiles. | |
| tile_weighting_method (`str`, *optional*, defaults to "Cosine"): | |
| Method for weighting tiles. Options: "Cosine" or "Gaussian". | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple` | |
| containing the output images. | |
| """ | |
| controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
| # align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| if not isinstance(control_image, list): | |
| control_image = [control_image] | |
| else: | |
| control_image = control_image.copy() | |
| if control_mode is None or isinstance(control_mode, list) and len(control_mode) == 0: | |
| raise ValueError("The value for `control_mode` is expected!") | |
| if not isinstance(control_mode, list): | |
| control_mode = [control_mode] | |
| if len(control_image) != len(control_mode): | |
| raise ValueError("Expected len(control_image) == len(control_mode)") | |
| num_control_type = controlnet.config.num_control_type | |
| # 0. Set internal use parameters | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| negative_original_size = negative_original_size or original_size | |
| negative_target_size = negative_target_size or target_size | |
| control_type = [0 for _ in range(num_control_type)] | |
| control_type = torch.Tensor(control_type) | |
| self._guidance_scale = guidance_scale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._interrupt = False | |
| batch_size = 1 | |
| device = self._execution_device | |
| global_pool_conditions = controlnet.config.global_pool_conditions | |
| guess_mode = guess_mode or global_pool_conditions | |
| # 1. Check inputs | |
| for _image, control_idx in zip(control_image, control_mode): | |
| control_type[control_idx] = 1 | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| _image, | |
| strength, | |
| num_inference_steps, | |
| normal_tile_overlap, | |
| border_tile_overlap, | |
| max_tile_size, | |
| tile_gaussian_sigma, | |
| tile_weighting_method, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| ) | |
| # 2 Get tile width and tile height size | |
| tile_width, tile_height = _adaptive_tile_size((width, height), max_tile_size=max_tile_size) | |
| # 2.1 Calculate the number of tiles needed | |
| grid_rows, grid_cols = self._get_num_tiles( | |
| height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap | |
| ) | |
| # 2.2 Expand prompt to number of tiles | |
| if not isinstance(prompt, list): | |
| prompt = [[prompt] * grid_cols] * grid_rows | |
| # 2.3 Update height and width tile size by tile size and tile overlap size | |
| width = (grid_cols - 1) * (tile_width - normal_tile_overlap) + min( | |
| tile_width, width - (grid_cols - 1) * (tile_width - normal_tile_overlap) | |
| ) | |
| height = (grid_rows - 1) * (tile_height - normal_tile_overlap) + min( | |
| tile_height, height - (grid_rows - 1) * (tile_height - normal_tile_overlap) | |
| ) | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| text_embeddings = [ | |
| [ | |
| self.encode_prompt( | |
| prompt=col, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| for col in row | |
| ] | |
| for row in prompt | |
| ] | |
| # 4. Prepare latent image | |
| image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| # 4.1 Prepare controlnet_conditioning_image | |
| control_image = self.prepare_control_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| control_type = ( | |
| control_type.reshape(1, -1) | |
| .to(device, dtype=controlnet.dtype) | |
| .repeat(batch_size * num_images_per_prompt * 2, 1) | |
| ) | |
| # 5. Prepare timesteps | |
| accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
| extra_set_kwargs = {} | |
| if accepts_offset: | |
| extra_set_kwargs["offset"] = 1 | |
| self.scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latent variables | |
| dtype = text_embeddings[0][0][0].dtype | |
| if latents is None: | |
| latents = self.prepare_latents( | |
| image_tensor, | |
| latent_timestep, | |
| batch_size, | |
| num_images_per_prompt, | |
| dtype, | |
| device, | |
| generator, | |
| True, | |
| ) | |
| # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas | |
| if isinstance(self.scheduler, LMSDiscreteScheduler): | |
| latents = latents * self.scheduler.sigmas[0] | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| controlnet_keep.append( | |
| 1.0 | |
| - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end) | |
| ) | |
| # 8.1 Prepare added time ids & embeddings | |
| # text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| embeddings_and_added_time = [] | |
| crops_coords_top_left = negative_crops_coords_top_left = (tile_width, tile_height) | |
| for row in range(grid_rows): | |
| addition_embed_type_row = [] | |
| for col in range(grid_cols): | |
| # extract generated values | |
| prompt_embeds = text_embeddings[row][col][0] | |
| negative_prompt_embeds = text_embeddings[row][col][1] | |
| pooled_prompt_embeds = text_embeddings[row][col][2] | |
| negative_pooled_prompt_embeds = text_embeddings[row][col][3] | |
| if negative_original_size is None: | |
| negative_original_size = original_size | |
| if negative_target_size is None: | |
| negative_target_size = target_size | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids)) | |
| embeddings_and_added_time.append(addition_embed_type_row) | |
| # 9. Prepare tiles weights and latent overlaps size to denoising process | |
| tile_weights, tile_row_overlaps, tile_col_overlaps = self.prepare_tiles( | |
| grid_rows, | |
| grid_cols, | |
| tile_weighting_method, | |
| tile_width, | |
| tile_height, | |
| normal_tile_overlap, | |
| border_tile_overlap, | |
| width, | |
| height, | |
| tile_gaussian_sigma, | |
| batch_size, | |
| device, | |
| dtype, | |
| ) | |
| # 10. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Diffuse each tile | |
| noise_preds = [] | |
| for row in range(grid_rows): | |
| noise_preds_row = [] | |
| for col in range(grid_cols): | |
| if self.interrupt: | |
| continue | |
| tile_row_overlap = tile_row_overlaps[row, col] | |
| tile_col_overlap = tile_col_overlaps[row, col] | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( | |
| row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height | |
| ) | |
| tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end] | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = ( | |
| torch.cat([tile_latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else tile_latents # 1, 4, ... | |
| ) | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| added_cond_kwargs = { | |
| "text_embeds": embeddings_and_added_time[row][col][1], | |
| "time_ids": embeddings_and_added_time[row][col][2], | |
| } | |
| # controlnet(s) inference | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| control_model_input = tile_latents | |
| control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
| controlnet_prompt_embeds = embeddings_and_added_time[row][col][0].chunk(2)[1] | |
| controlnet_added_cond_kwargs = { | |
| "text_embeds": embeddings_and_added_time[row][col][1].chunk(2)[1], | |
| "time_ids": embeddings_and_added_time[row][col][2].chunk(2)[1], | |
| } | |
| else: | |
| control_model_input = latent_model_input | |
| controlnet_prompt_embeds = embeddings_and_added_time[row][col][0] | |
| controlnet_added_cond_kwargs = added_cond_kwargs | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| px_row_init_pixel, px_row_end_pixel, px_col_init_pixel, px_col_end_pixel = _tile2pixel_indices( | |
| row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height | |
| ) | |
| tile_control_image = control_image[ | |
| :, :, px_row_init_pixel:px_row_end_pixel, px_col_init_pixel:px_col_end_pixel | |
| ] | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=[tile_control_image], | |
| control_type=control_type, | |
| control_type_idx=control_mode, | |
| conditioning_scale=cond_scale, | |
| guess_mode=guess_mode, | |
| added_cond_kwargs=controlnet_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| if guess_mode and self.do_classifier_free_guidance: | |
| # Inferred ControlNet only for the conditional batch. | |
| # To apply the output of ControlNet to both the unconditional and conditional batches, | |
| # add 0 to the unconditional batch to keep it unchanged. | |
| down_block_res_samples = [ | |
| torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples | |
| ] | |
| mid_block_res_sample = torch.cat( | |
| [torch.zeros_like(mid_block_res_sample), mid_block_res_sample] | |
| ) | |
| # predict the noise residual | |
| with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype): | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=embeddings_and_added_time[row][col][0], | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred_tile = noise_pred_uncond + guidance_scale * ( | |
| noise_pred_text - noise_pred_uncond | |
| ) | |
| noise_preds_row.append(noise_pred_tile) | |
| noise_preds.append(noise_preds_row) | |
| # Stitch noise predictions for all tiles | |
| noise_pred = torch.zeros(latents.shape, device=device) | |
| contributors = torch.zeros(latents.shape, device=device) | |
| # Add each tile contribution to overall latents | |
| for row in range(grid_rows): | |
| for col in range(grid_cols): | |
| tile_row_overlap = tile_row_overlaps[row, col] | |
| tile_col_overlap = tile_col_overlaps[row, col] | |
| px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices( | |
| row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height | |
| ) | |
| tile_weights_resized = tile_weights[row, col] | |
| noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += ( | |
| noise_preds[row][col] * tile_weights_resized | |
| ) | |
| contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights_resized | |
| # Average overlapping areas with more than 1 contributor | |
| noise_pred /= contributors | |
| noise_pred = noise_pred.to(dtype) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| # update progress bar | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| # If we do sequential model offloading, let's offload unet and controlnet | |
| # manually for max memory savings | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.unet.to("cpu") | |
| self.controlnet.to("cpu") | |
| torch.cuda.empty_cache() | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| # unscale/denormalize the latents | |
| # denormalize with the mean and std if available and not None | |
| has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
| has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
| if has_latents_mean and has_latents_std: | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents_std = ( | |
| torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
| else: | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| else: | |
| image = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| result = StableDiffusionXLPipelineOutput(images=image) | |
| if not return_dict: | |
| return (image,) | |
| return result | |