Spaces:
Runtime error
Runtime error
Cosmos-Predict2-2B
/
diffusers_repo
/src
/diffusers
/models
/autoencoders
/autoencoder_kl_cogvideox.py
| # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Dict, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...loaders.single_file_model import FromOriginalModelMixin | |
| from ...utils import logging | |
| from ...utils.accelerate_utils import apply_forward_hook | |
| from ..activations import get_activation | |
| from ..downsampling import CogVideoXDownsample3D | |
| from ..modeling_outputs import AutoencoderKLOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..upsampling import CogVideoXUpsample3D | |
| from .vae import DecoderOutput, DiagonalGaussianDistribution | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CogVideoXSafeConv3d(nn.Conv3d): | |
| r""" | |
| A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. | |
| """ | |
| def forward(self, input: torch.Tensor) -> torch.Tensor: | |
| memory_count = ( | |
| (input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3 | |
| ) | |
| # Set to 2GB, suitable for CuDNN | |
| if memory_count > 2: | |
| kernel_size = self.kernel_size[0] | |
| part_num = int(memory_count / 2) + 1 | |
| input_chunks = torch.chunk(input, part_num, dim=2) | |
| if kernel_size > 1: | |
| input_chunks = [input_chunks[0]] + [ | |
| torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) | |
| for i in range(1, len(input_chunks)) | |
| ] | |
| output_chunks = [] | |
| for input_chunk in input_chunks: | |
| output_chunks.append(super().forward(input_chunk)) | |
| output = torch.cat(output_chunks, dim=2) | |
| return output | |
| else: | |
| return super().forward(input) | |
| class CogVideoXCausalConv3d(nn.Module): | |
| r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. | |
| Args: | |
| in_channels (`int`): Number of channels in the input tensor. | |
| out_channels (`int`): Number of output channels produced by the convolution. | |
| kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. | |
| stride (`int`, defaults to `1`): Stride of the convolution. | |
| dilation (`int`, defaults to `1`): Dilation rate of the convolution. | |
| pad_mode (`str`, defaults to `"constant"`): Padding mode. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Union[int, Tuple[int, int, int]], | |
| stride: int = 1, | |
| dilation: int = 1, | |
| pad_mode: str = "constant", | |
| ): | |
| super().__init__() | |
| if isinstance(kernel_size, int): | |
| kernel_size = (kernel_size,) * 3 | |
| time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
| # TODO(aryan): configure calculation based on stride and dilation in the future. | |
| # Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi | |
| time_pad = time_kernel_size - 1 | |
| height_pad = (height_kernel_size - 1) // 2 | |
| width_pad = (width_kernel_size - 1) // 2 | |
| self.pad_mode = pad_mode | |
| self.height_pad = height_pad | |
| self.width_pad = width_pad | |
| self.time_pad = time_pad | |
| self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) | |
| self.const_padding_conv3d = (0, self.width_pad, self.height_pad) | |
| self.temporal_dim = 2 | |
| self.time_kernel_size = time_kernel_size | |
| stride = stride if isinstance(stride, tuple) else (stride, 1, 1) | |
| dilation = (dilation, 1, 1) | |
| self.conv = CogVideoXSafeConv3d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| padding=0 if self.pad_mode == "replicate" else self.const_padding_conv3d, | |
| padding_mode="zeros", | |
| ) | |
| def fake_context_parallel_forward( | |
| self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| if self.pad_mode == "replicate": | |
| inputs = F.pad(inputs, self.time_causal_padding, mode="replicate") | |
| else: | |
| kernel_size = self.time_kernel_size | |
| if kernel_size > 1: | |
| cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) | |
| inputs = torch.cat(cached_inputs + [inputs], dim=2) | |
| return inputs | |
| def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor: | |
| inputs = self.fake_context_parallel_forward(inputs, conv_cache) | |
| if self.pad_mode == "replicate": | |
| conv_cache = None | |
| else: | |
| conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() | |
| output = self.conv(inputs) | |
| return output, conv_cache | |
| class CogVideoXSpatialNorm3D(nn.Module): | |
| r""" | |
| Spatially conditioned normalization as defined in https://huggingface.co/papers/2209.09002. This implementation is | |
| specific to 3D-video like data. | |
| CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. | |
| Args: | |
| f_channels (`int`): | |
| The number of channels for input to group normalization layer, and output of the spatial norm layer. | |
| zq_channels (`int`): | |
| The number of channels for the quantized vector as described in the paper. | |
| groups (`int`): | |
| Number of groups to separate the channels into for group normalization. | |
| """ | |
| def __init__( | |
| self, | |
| f_channels: int, | |
| zq_channels: int, | |
| groups: int = 32, | |
| ): | |
| super().__init__() | |
| self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) | |
| self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
| self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) | |
| def forward( | |
| self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None | |
| ) -> torch.Tensor: | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| if f.shape[2] > 1 and f.shape[2] % 2 == 1: | |
| f_first, f_rest = f[:, :, :1], f[:, :, 1:] | |
| f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] | |
| z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] | |
| z_first = F.interpolate(z_first, size=f_first_size) | |
| z_rest = F.interpolate(z_rest, size=f_rest_size) | |
| zq = torch.cat([z_first, z_rest], dim=2) | |
| else: | |
| zq = F.interpolate(zq, size=f.shape[-3:]) | |
| conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y")) | |
| conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b")) | |
| norm_f = self.norm_layer(f) | |
| new_f = norm_f * conv_y + conv_b | |
| return new_f, new_conv_cache | |
| class CogVideoXResnetBlock3D(nn.Module): | |
| r""" | |
| A 3D ResNet block used in the CogVideoX model. | |
| Args: | |
| in_channels (`int`): | |
| Number of input channels. | |
| out_channels (`int`, *optional*): | |
| Number of output channels. If None, defaults to `in_channels`. | |
| dropout (`float`, defaults to `0.0`): | |
| Dropout rate. | |
| temb_channels (`int`, defaults to `512`): | |
| Number of time embedding channels. | |
| groups (`int`, defaults to `32`): | |
| Number of groups to separate the channels into for group normalization. | |
| eps (`float`, defaults to `1e-6`): | |
| Epsilon value for normalization layers. | |
| non_linearity (`str`, defaults to `"swish"`): | |
| Activation function to use. | |
| conv_shortcut (bool, defaults to `False`): | |
| Whether or not to use a convolution shortcut. | |
| spatial_norm_dim (`int`, *optional*): | |
| The dimension to use for spatial norm if it is to be used instead of group norm. | |
| pad_mode (str, defaults to `"first"`): | |
| Padding mode. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: Optional[int] = None, | |
| dropout: float = 0.0, | |
| temb_channels: int = 512, | |
| groups: int = 32, | |
| eps: float = 1e-6, | |
| non_linearity: str = "swish", | |
| conv_shortcut: bool = False, | |
| spatial_norm_dim: Optional[int] = None, | |
| pad_mode: str = "first", | |
| ): | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.nonlinearity = get_activation(non_linearity) | |
| self.use_conv_shortcut = conv_shortcut | |
| self.spatial_norm_dim = spatial_norm_dim | |
| if spatial_norm_dim is None: | |
| self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) | |
| self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) | |
| else: | |
| self.norm1 = CogVideoXSpatialNorm3D( | |
| f_channels=in_channels, | |
| zq_channels=spatial_norm_dim, | |
| groups=groups, | |
| ) | |
| self.norm2 = CogVideoXSpatialNorm3D( | |
| f_channels=out_channels, | |
| zq_channels=spatial_norm_dim, | |
| groups=groups, | |
| ) | |
| self.conv1 = CogVideoXCausalConv3d( | |
| in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
| ) | |
| if temb_channels > 0: | |
| self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) | |
| self.dropout = nn.Dropout(dropout) | |
| self.conv2 = CogVideoXCausalConv3d( | |
| in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
| ) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| self.conv_shortcut = CogVideoXCausalConv3d( | |
| in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode | |
| ) | |
| else: | |
| self.conv_shortcut = CogVideoXSafeConv3d( | |
| in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 | |
| ) | |
| def forward( | |
| self, | |
| inputs: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| zq: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| hidden_states = inputs | |
| if zq is not None: | |
| hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1")) | |
| else: | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1")) | |
| if temb is not None: | |
| hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] | |
| if zq is not None: | |
| hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2")) | |
| else: | |
| hidden_states = self.norm2(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2")) | |
| if self.in_channels != self.out_channels: | |
| if self.use_conv_shortcut: | |
| inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut( | |
| inputs, conv_cache=conv_cache.get("conv_shortcut") | |
| ) | |
| else: | |
| inputs = self.conv_shortcut(inputs) | |
| hidden_states = hidden_states + inputs | |
| return hidden_states, new_conv_cache | |
| class CogVideoXDownBlock3D(nn.Module): | |
| r""" | |
| A downsampling block used in the CogVideoX model. | |
| Args: | |
| in_channels (`int`): | |
| Number of input channels. | |
| out_channels (`int`, *optional*): | |
| Number of output channels. If None, defaults to `in_channels`. | |
| temb_channels (`int`, defaults to `512`): | |
| Number of time embedding channels. | |
| num_layers (`int`, defaults to `1`): | |
| Number of resnet layers. | |
| dropout (`float`, defaults to `0.0`): | |
| Dropout rate. | |
| resnet_eps (`float`, defaults to `1e-6`): | |
| Epsilon value for normalization layers. | |
| resnet_act_fn (`str`, defaults to `"swish"`): | |
| Activation function to use. | |
| resnet_groups (`int`, defaults to `32`): | |
| Number of groups to separate the channels into for group normalization. | |
| add_downsample (`bool`, defaults to `True`): | |
| Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. | |
| compress_time (`bool`, defaults to `False`): | |
| Whether or not to downsample across temporal dimension. | |
| pad_mode (str, defaults to `"first"`): | |
| Padding mode. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| add_downsample: bool = True, | |
| downsample_padding: int = 0, | |
| compress_time: bool = False, | |
| pad_mode: str = "first", | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channel = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| CogVideoXResnetBlock3D( | |
| in_channels=in_channel, | |
| out_channels=out_channels, | |
| dropout=dropout, | |
| temb_channels=temb_channels, | |
| groups=resnet_groups, | |
| eps=resnet_eps, | |
| non_linearity=resnet_act_fn, | |
| pad_mode=pad_mode, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.downsamplers = None | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| CogVideoXDownsample3D( | |
| out_channels, out_channels, padding=downsample_padding, compress_time=compress_time | |
| ) | |
| ] | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| zq: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| r"""Forward method of the `CogVideoXDownBlock3D` class.""" | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| for i, resnet in enumerate(self.resnets): | |
| conv_cache_key = f"resnet_{i}" | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func( | |
| resnet, | |
| hidden_states, | |
| temb, | |
| zq, | |
| conv_cache.get(conv_cache_key), | |
| ) | |
| else: | |
| hidden_states, new_conv_cache[conv_cache_key] = resnet( | |
| hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) | |
| ) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| return hidden_states, new_conv_cache | |
| class CogVideoXMidBlock3D(nn.Module): | |
| r""" | |
| A middle block used in the CogVideoX model. | |
| Args: | |
| in_channels (`int`): | |
| Number of input channels. | |
| temb_channels (`int`, defaults to `512`): | |
| Number of time embedding channels. | |
| dropout (`float`, defaults to `0.0`): | |
| Dropout rate. | |
| num_layers (`int`, defaults to `1`): | |
| Number of resnet layers. | |
| resnet_eps (`float`, defaults to `1e-6`): | |
| Epsilon value for normalization layers. | |
| resnet_act_fn (`str`, defaults to `"swish"`): | |
| Activation function to use. | |
| resnet_groups (`int`, defaults to `32`): | |
| Number of groups to separate the channels into for group normalization. | |
| spatial_norm_dim (`int`, *optional*): | |
| The dimension to use for spatial norm if it is to be used instead of group norm. | |
| pad_mode (str, defaults to `"first"`): | |
| Padding mode. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| spatial_norm_dim: Optional[int] = None, | |
| pad_mode: str = "first", | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for _ in range(num_layers): | |
| resnets.append( | |
| CogVideoXResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| dropout=dropout, | |
| temb_channels=temb_channels, | |
| groups=resnet_groups, | |
| eps=resnet_eps, | |
| spatial_norm_dim=spatial_norm_dim, | |
| non_linearity=resnet_act_fn, | |
| pad_mode=pad_mode, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| zq: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| r"""Forward method of the `CogVideoXMidBlock3D` class.""" | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| for i, resnet in enumerate(self.resnets): | |
| conv_cache_key = f"resnet_{i}" | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func( | |
| resnet, hidden_states, temb, zq, conv_cache.get(conv_cache_key) | |
| ) | |
| else: | |
| hidden_states, new_conv_cache[conv_cache_key] = resnet( | |
| hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) | |
| ) | |
| return hidden_states, new_conv_cache | |
| class CogVideoXUpBlock3D(nn.Module): | |
| r""" | |
| An upsampling block used in the CogVideoX model. | |
| Args: | |
| in_channels (`int`): | |
| Number of input channels. | |
| out_channels (`int`, *optional*): | |
| Number of output channels. If None, defaults to `in_channels`. | |
| temb_channels (`int`, defaults to `512`): | |
| Number of time embedding channels. | |
| dropout (`float`, defaults to `0.0`): | |
| Dropout rate. | |
| num_layers (`int`, defaults to `1`): | |
| Number of resnet layers. | |
| resnet_eps (`float`, defaults to `1e-6`): | |
| Epsilon value for normalization layers. | |
| resnet_act_fn (`str`, defaults to `"swish"`): | |
| Activation function to use. | |
| resnet_groups (`int`, defaults to `32`): | |
| Number of groups to separate the channels into for group normalization. | |
| spatial_norm_dim (`int`, defaults to `16`): | |
| The dimension to use for spatial norm if it is to be used instead of group norm. | |
| add_upsample (`bool`, defaults to `True`): | |
| Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. | |
| compress_time (`bool`, defaults to `False`): | |
| Whether or not to downsample across temporal dimension. | |
| pad_mode (str, defaults to `"first"`): | |
| Padding mode. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| spatial_norm_dim: int = 16, | |
| add_upsample: bool = True, | |
| upsample_padding: int = 1, | |
| compress_time: bool = False, | |
| pad_mode: str = "first", | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channel = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| CogVideoXResnetBlock3D( | |
| in_channels=in_channel, | |
| out_channels=out_channels, | |
| dropout=dropout, | |
| temb_channels=temb_channels, | |
| groups=resnet_groups, | |
| eps=resnet_eps, | |
| non_linearity=resnet_act_fn, | |
| spatial_norm_dim=spatial_norm_dim, | |
| pad_mode=pad_mode, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.upsamplers = None | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList( | |
| [ | |
| CogVideoXUpsample3D( | |
| out_channels, out_channels, padding=upsample_padding, compress_time=compress_time | |
| ) | |
| ] | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| zq: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| r"""Forward method of the `CogVideoXUpBlock3D` class.""" | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| for i, resnet in enumerate(self.resnets): | |
| conv_cache_key = f"resnet_{i}" | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func( | |
| resnet, | |
| hidden_states, | |
| temb, | |
| zq, | |
| conv_cache.get(conv_cache_key), | |
| ) | |
| else: | |
| hidden_states, new_conv_cache[conv_cache_key] = resnet( | |
| hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) | |
| ) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states) | |
| return hidden_states, new_conv_cache | |
| class CogVideoXEncoder3D(nn.Module): | |
| r""" | |
| The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
| options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 16, | |
| down_block_types: Tuple[str, ...] = ( | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), | |
| layers_per_block: int = 3, | |
| act_fn: str = "silu", | |
| norm_eps: float = 1e-6, | |
| norm_num_groups: int = 32, | |
| dropout: float = 0.0, | |
| pad_mode: str = "first", | |
| temporal_compression_ratio: float = 4, | |
| ): | |
| super().__init__() | |
| # log2 of temporal_compress_times | |
| temporal_compress_level = int(np.log2(temporal_compression_ratio)) | |
| self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) | |
| self.down_blocks = nn.ModuleList([]) | |
| # down blocks | |
| output_channel = block_out_channels[0] | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| compress_time = i < temporal_compress_level | |
| if down_block_type == "CogVideoXDownBlock3D": | |
| down_block = CogVideoXDownBlock3D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=0, | |
| dropout=dropout, | |
| num_layers=layers_per_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| add_downsample=not is_final_block, | |
| compress_time=compress_time, | |
| ) | |
| else: | |
| raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") | |
| self.down_blocks.append(down_block) | |
| # mid block | |
| self.mid_block = CogVideoXMidBlock3D( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=0, | |
| dropout=dropout, | |
| num_layers=2, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| pad_mode=pad_mode, | |
| ) | |
| self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = CogVideoXCausalConv3d( | |
| block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| r"""The forward method of the `CogVideoXEncoder3D` class.""" | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| # 1. Down | |
| for i, down_block in enumerate(self.down_blocks): | |
| conv_cache_key = f"down_block_{i}" | |
| hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func( | |
| down_block, | |
| hidden_states, | |
| temb, | |
| None, | |
| conv_cache.get(conv_cache_key), | |
| ) | |
| # 2. Mid | |
| hidden_states, new_conv_cache["mid_block"] = self._gradient_checkpointing_func( | |
| self.mid_block, | |
| hidden_states, | |
| temb, | |
| None, | |
| conv_cache.get("mid_block"), | |
| ) | |
| else: | |
| # 1. Down | |
| for i, down_block in enumerate(self.down_blocks): | |
| conv_cache_key = f"down_block_{i}" | |
| hidden_states, new_conv_cache[conv_cache_key] = down_block( | |
| hidden_states, temb, None, conv_cache.get(conv_cache_key) | |
| ) | |
| # 2. Mid | |
| hidden_states, new_conv_cache["mid_block"] = self.mid_block( | |
| hidden_states, temb, None, conv_cache=conv_cache.get("mid_block") | |
| ) | |
| # 3. Post-process | |
| hidden_states = self.norm_out(hidden_states) | |
| hidden_states = self.conv_act(hidden_states) | |
| hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) | |
| return hidden_states, new_conv_cache | |
| class CogVideoXDecoder3D(nn.Module): | |
| r""" | |
| The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output | |
| sample. | |
| Args: | |
| in_channels (`int`, *optional*, defaults to 3): | |
| The number of input channels. | |
| out_channels (`int`, *optional*, defaults to 3): | |
| The number of output channels. | |
| up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
| block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
| The number of output channels for each block. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): | |
| The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups for normalization. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 16, | |
| out_channels: int = 3, | |
| up_block_types: Tuple[str, ...] = ( | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), | |
| layers_per_block: int = 3, | |
| act_fn: str = "silu", | |
| norm_eps: float = 1e-6, | |
| norm_num_groups: int = 32, | |
| dropout: float = 0.0, | |
| pad_mode: str = "first", | |
| temporal_compression_ratio: float = 4, | |
| ): | |
| super().__init__() | |
| reversed_block_out_channels = list(reversed(block_out_channels)) | |
| self.conv_in = CogVideoXCausalConv3d( | |
| in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode | |
| ) | |
| # mid block | |
| self.mid_block = CogVideoXMidBlock3D( | |
| in_channels=reversed_block_out_channels[0], | |
| temb_channels=0, | |
| num_layers=2, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| spatial_norm_dim=in_channels, | |
| pad_mode=pad_mode, | |
| ) | |
| # up blocks | |
| self.up_blocks = nn.ModuleList([]) | |
| output_channel = reversed_block_out_channels[0] | |
| temporal_compress_level = int(np.log2(temporal_compression_ratio)) | |
| for i, up_block_type in enumerate(up_block_types): | |
| prev_output_channel = output_channel | |
| output_channel = reversed_block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| compress_time = i < temporal_compress_level | |
| if up_block_type == "CogVideoXUpBlock3D": | |
| up_block = CogVideoXUpBlock3D( | |
| in_channels=prev_output_channel, | |
| out_channels=output_channel, | |
| temb_channels=0, | |
| dropout=dropout, | |
| num_layers=layers_per_block + 1, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| spatial_norm_dim=in_channels, | |
| add_upsample=not is_final_block, | |
| compress_time=compress_time, | |
| pad_mode=pad_mode, | |
| ) | |
| prev_output_channel = output_channel | |
| else: | |
| raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") | |
| self.up_blocks.append(up_block) | |
| self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) | |
| self.conv_act = nn.SiLU() | |
| self.conv_out = CogVideoXCausalConv3d( | |
| reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode | |
| ) | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| temb: Optional[torch.Tensor] = None, | |
| conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| r"""The forward method of the `CogVideoXDecoder3D` class.""" | |
| new_conv_cache = {} | |
| conv_cache = conv_cache or {} | |
| hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| # 1. Mid | |
| hidden_states, new_conv_cache["mid_block"] = self._gradient_checkpointing_func( | |
| self.mid_block, | |
| hidden_states, | |
| temb, | |
| sample, | |
| conv_cache.get("mid_block"), | |
| ) | |
| # 2. Up | |
| for i, up_block in enumerate(self.up_blocks): | |
| conv_cache_key = f"up_block_{i}" | |
| hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func( | |
| up_block, | |
| hidden_states, | |
| temb, | |
| sample, | |
| conv_cache.get(conv_cache_key), | |
| ) | |
| else: | |
| # 1. Mid | |
| hidden_states, new_conv_cache["mid_block"] = self.mid_block( | |
| hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block") | |
| ) | |
| # 2. Up | |
| for i, up_block in enumerate(self.up_blocks): | |
| conv_cache_key = f"up_block_{i}" | |
| hidden_states, new_conv_cache[conv_cache_key] = up_block( | |
| hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key) | |
| ) | |
| # 3. Post-process | |
| hidden_states, new_conv_cache["norm_out"] = self.norm_out( | |
| hidden_states, sample, conv_cache=conv_cache.get("norm_out") | |
| ) | |
| hidden_states = self.conv_act(hidden_states) | |
| hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) | |
| return hidden_states, new_conv_cache | |
| class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| r""" | |
| A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in | |
| [CogVideoX](https://github.com/THUDM/CogVideo). | |
| This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
| for all models (such as downloading or saving). | |
| Parameters: | |
| in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
| out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
| Tuple of downsample block types. | |
| up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
| Tuple of upsample block types. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
| Tuple of block output channels. | |
| act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
| sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
| scaling_factor (`float`, *optional*, defaults to `1.15258426`): | |
| The component-wise standard deviation of the trained latent space computed using the first batch of the | |
| training set. This is used to scale the latent space to have unit variance when training the diffusion | |
| model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
| diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
| / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
| Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper. | |
| force_upcast (`bool`, *optional*, default to `True`): | |
| If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
| can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast` | |
| can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["CogVideoXResnetBlock3D"] | |
| def __init__( | |
| self, | |
| in_channels: int = 3, | |
| out_channels: int = 3, | |
| down_block_types: Tuple[str] = ( | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| "CogVideoXDownBlock3D", | |
| ), | |
| up_block_types: Tuple[str] = ( | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| "CogVideoXUpBlock3D", | |
| ), | |
| block_out_channels: Tuple[int] = (128, 256, 256, 512), | |
| latent_channels: int = 16, | |
| layers_per_block: int = 3, | |
| act_fn: str = "silu", | |
| norm_eps: float = 1e-6, | |
| norm_num_groups: int = 32, | |
| temporal_compression_ratio: float = 4, | |
| sample_height: int = 480, | |
| sample_width: int = 720, | |
| scaling_factor: float = 1.15258426, | |
| shift_factor: Optional[float] = None, | |
| latents_mean: Optional[Tuple[float]] = None, | |
| latents_std: Optional[Tuple[float]] = None, | |
| force_upcast: float = True, | |
| use_quant_conv: bool = False, | |
| use_post_quant_conv: bool = False, | |
| invert_scale_latents: bool = False, | |
| ): | |
| super().__init__() | |
| self.encoder = CogVideoXEncoder3D( | |
| in_channels=in_channels, | |
| out_channels=latent_channels, | |
| down_block_types=down_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| act_fn=act_fn, | |
| norm_eps=norm_eps, | |
| norm_num_groups=norm_num_groups, | |
| temporal_compression_ratio=temporal_compression_ratio, | |
| ) | |
| self.decoder = CogVideoXDecoder3D( | |
| in_channels=latent_channels, | |
| out_channels=out_channels, | |
| up_block_types=up_block_types, | |
| block_out_channels=block_out_channels, | |
| layers_per_block=layers_per_block, | |
| act_fn=act_fn, | |
| norm_eps=norm_eps, | |
| norm_num_groups=norm_num_groups, | |
| temporal_compression_ratio=temporal_compression_ratio, | |
| ) | |
| self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None | |
| self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None | |
| self.use_slicing = False | |
| self.use_tiling = False | |
| # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not | |
| # recommended because the temporal parts of the VAE, here, are tricky to understand. | |
| # If you decode X latent frames together, the number of output frames is: | |
| # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames | |
| # | |
| # Example with num_latent_frames_batch_size = 2: | |
| # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together | |
| # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
| # => 6 * 8 = 48 frames | |
| # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together | |
| # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + | |
| # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
| # => 1 * 9 + 5 * 8 = 49 frames | |
| # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that | |
| # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different | |
| # number of temporal frames. | |
| self.num_latent_frames_batch_size = 2 | |
| self.num_sample_frames_batch_size = 8 | |
| # We make the minimum height and width of sample for tiling half that of the generally supported | |
| self.tile_sample_min_height = sample_height // 2 | |
| self.tile_sample_min_width = sample_width // 2 | |
| self.tile_latent_min_height = int( | |
| self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
| ) | |
| self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
| # These are experimental overlap factors that were chosen based on experimentation and seem to work best for | |
| # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX | |
| # and so the tiling implementation has only been tested on those specific resolutions. | |
| self.tile_overlap_factor_height = 1 / 6 | |
| self.tile_overlap_factor_width = 1 / 5 | |
| def enable_tiling( | |
| self, | |
| tile_sample_min_height: Optional[int] = None, | |
| tile_sample_min_width: Optional[int] = None, | |
| tile_overlap_factor_height: Optional[float] = None, | |
| tile_overlap_factor_width: Optional[float] = None, | |
| ) -> None: | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| Args: | |
| tile_sample_min_height (`int`, *optional*): | |
| The minimum height required for a sample to be separated into tiles across the height dimension. | |
| tile_sample_min_width (`int`, *optional*): | |
| The minimum width required for a sample to be separated into tiles across the width dimension. | |
| tile_overlap_factor_height (`int`, *optional*): | |
| The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
| no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher | |
| value might cause more tiles to be processed leading to slow down of the decoding process. | |
| tile_overlap_factor_width (`int`, *optional*): | |
| The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there | |
| are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher | |
| value might cause more tiles to be processed leading to slow down of the decoding process. | |
| """ | |
| self.use_tiling = True | |
| self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
| self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
| self.tile_latent_min_height = int( | |
| self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
| ) | |
| self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
| self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height | |
| self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width | |
| def disable_tiling(self) -> None: | |
| r""" | |
| Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
| decoding in one step. | |
| """ | |
| self.use_tiling = False | |
| def enable_slicing(self) -> None: | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.use_slicing = True | |
| def disable_slicing(self) -> None: | |
| r""" | |
| Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
| decoding in one step. | |
| """ | |
| self.use_slicing = False | |
| def _encode(self, x: torch.Tensor) -> torch.Tensor: | |
| batch_size, num_channels, num_frames, height, width = x.shape | |
| if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): | |
| return self.tiled_encode(x) | |
| frame_batch_size = self.num_sample_frames_batch_size | |
| # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. | |
| # As the extra single frame is handled inside the loop, it is not required to round up here. | |
| num_batches = max(num_frames // frame_batch_size, 1) | |
| conv_cache = None | |
| enc = [] | |
| for i in range(num_batches): | |
| remaining_frames = num_frames % frame_batch_size | |
| start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) | |
| end_frame = frame_batch_size * (i + 1) + remaining_frames | |
| x_intermediate = x[:, :, start_frame:end_frame] | |
| x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache) | |
| if self.quant_conv is not None: | |
| x_intermediate = self.quant_conv(x_intermediate) | |
| enc.append(x_intermediate) | |
| enc = torch.cat(enc, dim=2) | |
| return enc | |
| def encode( | |
| self, x: torch.Tensor, return_dict: bool = True | |
| ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: | |
| """ | |
| Encode a batch of images into latents. | |
| Args: | |
| x (`torch.Tensor`): Input batch of images. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. | |
| Returns: | |
| The latent representations of the encoded videos. If `return_dict` is True, a | |
| [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. | |
| """ | |
| if self.use_slicing and x.shape[0] > 1: | |
| encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] | |
| h = torch.cat(encoded_slices) | |
| else: | |
| h = self._encode(x) | |
| posterior = DiagonalGaussianDistribution(h) | |
| if not return_dict: | |
| return (posterior,) | |
| return AutoencoderKLOutput(latent_dist=posterior) | |
| def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| batch_size, num_channels, num_frames, height, width = z.shape | |
| if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): | |
| return self.tiled_decode(z, return_dict=return_dict) | |
| frame_batch_size = self.num_latent_frames_batch_size | |
| num_batches = max(num_frames // frame_batch_size, 1) | |
| conv_cache = None | |
| dec = [] | |
| for i in range(num_batches): | |
| remaining_frames = num_frames % frame_batch_size | |
| start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) | |
| end_frame = frame_batch_size * (i + 1) + remaining_frames | |
| z_intermediate = z[:, :, start_frame:end_frame] | |
| if self.post_quant_conv is not None: | |
| z_intermediate = self.post_quant_conv(z_intermediate) | |
| z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache) | |
| dec.append(z_intermediate) | |
| dec = torch.cat(dec, dim=2) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| """ | |
| Decode a batch of images. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| if self.use_slicing and z.shape[0] > 1: | |
| decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
| decoded = torch.cat(decoded_slices) | |
| else: | |
| decoded = self._decode(z).sample | |
| if not return_dict: | |
| return (decoded,) | |
| return DecoderOutput(sample=decoded) | |
| def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
| for y in range(blend_extent): | |
| b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
| y / blend_extent | |
| ) | |
| return b | |
| def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
| blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
| for x in range(blend_extent): | |
| b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
| x / blend_extent | |
| ) | |
| return b | |
| def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: | |
| r"""Encode a batch of images using a tiled encoder. | |
| When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several | |
| steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is | |
| different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the | |
| tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the | |
| output, but they should be much less noticeable. | |
| Args: | |
| x (`torch.Tensor`): Input batch of videos. | |
| Returns: | |
| `torch.Tensor`: | |
| The latent representation of the encoded videos. | |
| """ | |
| # For a rough memory estimate, take a look at the `tiled_decode` method. | |
| batch_size, num_channels, num_frames, height, width = x.shape | |
| overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height)) | |
| overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width)) | |
| blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height) | |
| blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width) | |
| row_limit_height = self.tile_latent_min_height - blend_extent_height | |
| row_limit_width = self.tile_latent_min_width - blend_extent_width | |
| frame_batch_size = self.num_sample_frames_batch_size | |
| # Split x into overlapping tiles and encode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, height, overlap_height): | |
| row = [] | |
| for j in range(0, width, overlap_width): | |
| # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. | |
| # As the extra single frame is handled inside the loop, it is not required to round up here. | |
| num_batches = max(num_frames // frame_batch_size, 1) | |
| conv_cache = None | |
| time = [] | |
| for k in range(num_batches): | |
| remaining_frames = num_frames % frame_batch_size | |
| start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) | |
| end_frame = frame_batch_size * (k + 1) + remaining_frames | |
| tile = x[ | |
| :, | |
| :, | |
| start_frame:end_frame, | |
| i : i + self.tile_sample_min_height, | |
| j : j + self.tile_sample_min_width, | |
| ] | |
| tile, conv_cache = self.encoder(tile, conv_cache=conv_cache) | |
| if self.quant_conv is not None: | |
| tile = self.quant_conv(tile) | |
| time.append(tile) | |
| row.append(torch.cat(time, dim=2)) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent_width) | |
| result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| enc = torch.cat(result_rows, dim=3) | |
| return enc | |
| def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
| r""" | |
| Decode a batch of images using a tiled decoder. | |
| Args: | |
| z (`torch.Tensor`): Input batch of latent vectors. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.vae.DecoderOutput`] or `tuple`: | |
| If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
| returned. | |
| """ | |
| # Rough memory assessment: | |
| # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. | |
| # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. | |
| # - Assume fp16 (2 bytes per value). | |
| # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB | |
| # | |
| # Memory assessment when using tiling: | |
| # - Assume everything as above but now HxW is 240x360 by tiling in half | |
| # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB | |
| batch_size, num_channels, num_frames, height, width = z.shape | |
| overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) | |
| overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) | |
| blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) | |
| blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) | |
| row_limit_height = self.tile_sample_min_height - blend_extent_height | |
| row_limit_width = self.tile_sample_min_width - blend_extent_width | |
| frame_batch_size = self.num_latent_frames_batch_size | |
| # Split z into overlapping tiles and decode them separately. | |
| # The tiles have an overlap to avoid seams between tiles. | |
| rows = [] | |
| for i in range(0, height, overlap_height): | |
| row = [] | |
| for j in range(0, width, overlap_width): | |
| num_batches = max(num_frames // frame_batch_size, 1) | |
| conv_cache = None | |
| time = [] | |
| for k in range(num_batches): | |
| remaining_frames = num_frames % frame_batch_size | |
| start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) | |
| end_frame = frame_batch_size * (k + 1) + remaining_frames | |
| tile = z[ | |
| :, | |
| :, | |
| start_frame:end_frame, | |
| i : i + self.tile_latent_min_height, | |
| j : j + self.tile_latent_min_width, | |
| ] | |
| if self.post_quant_conv is not None: | |
| tile = self.post_quant_conv(tile) | |
| tile, conv_cache = self.decoder(tile, conv_cache=conv_cache) | |
| time.append(tile) | |
| row.append(torch.cat(time, dim=2)) | |
| rows.append(row) | |
| result_rows = [] | |
| for i, row in enumerate(rows): | |
| result_row = [] | |
| for j, tile in enumerate(row): | |
| # blend the above tile and the left tile | |
| # to the current tile and add the current tile to the result row | |
| if i > 0: | |
| tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) | |
| if j > 0: | |
| tile = self.blend_h(row[j - 1], tile, blend_extent_width) | |
| result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) | |
| result_rows.append(torch.cat(result_row, dim=4)) | |
| dec = torch.cat(result_rows, dim=3) | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| sample_posterior: bool = False, | |
| return_dict: bool = True, | |
| generator: Optional[torch.Generator] = None, | |
| ) -> Union[torch.Tensor, torch.Tensor]: | |
| x = sample | |
| posterior = self.encode(x).latent_dist | |
| if sample_posterior: | |
| z = posterior.sample(generator=generator) | |
| else: | |
| z = posterior.mode() | |
| dec = self.decode(z).sample | |
| if not return_dict: | |
| return (dec,) | |
| return DecoderOutput(sample=dec) | |