Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from ...configuration_utils import ConfigMixin, register_to_config | |
| from ...loaders import PeftAdapterMixin | |
| from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers | |
| from ..attention_processor import AttentionProcessor | |
| from ..embeddings import PatchEmbed, PixArtAlphaTextProjection | |
| from ..modeling_outputs import Transformer2DModelOutput | |
| from ..modeling_utils import ModelMixin | |
| from ..normalization import AdaLayerNormSingle, RMSNorm | |
| from ..transformers.sana_transformer import SanaTransformerBlock | |
| from .controlnet import zero_module | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class SanaControlNetOutput(BaseOutput): | |
| controlnet_block_samples: Tuple[torch.Tensor] | |
| class SanaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"] | |
| _skip_layerwise_casting_patterns = ["patch_embed", "norm"] | |
| def __init__( | |
| self, | |
| in_channels: int = 32, | |
| out_channels: Optional[int] = 32, | |
| num_attention_heads: int = 70, | |
| attention_head_dim: int = 32, | |
| num_layers: int = 7, | |
| num_cross_attention_heads: Optional[int] = 20, | |
| cross_attention_head_dim: Optional[int] = 112, | |
| cross_attention_dim: Optional[int] = 2240, | |
| caption_channels: int = 2304, | |
| mlp_ratio: float = 2.5, | |
| dropout: float = 0.0, | |
| attention_bias: bool = False, | |
| sample_size: int = 32, | |
| patch_size: int = 1, | |
| norm_elementwise_affine: bool = False, | |
| norm_eps: float = 1e-6, | |
| interpolation_scale: Optional[int] = None, | |
| ) -> None: | |
| super().__init__() | |
| out_channels = out_channels or in_channels | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # 1. Patch Embedding | |
| self.patch_embed = PatchEmbed( | |
| height=sample_size, | |
| width=sample_size, | |
| patch_size=patch_size, | |
| in_channels=in_channels, | |
| embed_dim=inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| pos_embed_type="sincos" if interpolation_scale is not None else None, | |
| ) | |
| # 2. Additional condition embeddings | |
| self.time_embed = AdaLayerNormSingle(inner_dim) | |
| self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) | |
| self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True) | |
| # 3. Transformer blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| SanaTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| num_cross_attention_heads=num_cross_attention_heads, | |
| cross_attention_head_dim=cross_attention_head_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| attention_bias=attention_bias, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| mlp_ratio=mlp_ratio, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| # controlnet_blocks | |
| self.controlnet_blocks = nn.ModuleList([]) | |
| self.input_block = zero_module(nn.Linear(inner_dim, inner_dim)) | |
| for _ in range(len(self.transformer_blocks)): | |
| controlnet_block = nn.Linear(inner_dim, inner_dim) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_blocks.append(controlnet_block) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| timestep: torch.LongTensor, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 1. Input | |
| batch_size, num_channels, height, width = hidden_states.shape | |
| p = self.config.patch_size | |
| post_patch_height, post_patch_width = height // p, width // p | |
| hidden_states = self.patch_embed(hidden_states) | |
| hidden_states = hidden_states + self.input_block(self.patch_embed(controlnet_cond.to(hidden_states.dtype))) | |
| timestep, embedded_timestep = self.time_embed( | |
| timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
| ) | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
| encoder_hidden_states = self.caption_norm(encoder_hidden_states) | |
| # 2. Transformer blocks | |
| block_res_samples = () | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| for block in self.transformer_blocks: | |
| hidden_states = self._gradient_checkpointing_func( | |
| block, | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| post_patch_height, | |
| post_patch_width, | |
| ) | |
| block_res_samples = block_res_samples + (hidden_states,) | |
| else: | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| post_patch_height, | |
| post_patch_width, | |
| ) | |
| block_res_samples = block_res_samples + (hidden_states,) | |
| # 3. ControlNet blocks | |
| controlnet_block_res_samples = () | |
| for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): | |
| block_res_sample = controlnet_block(block_res_sample) | |
| controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples] | |
| if not return_dict: | |
| return (controlnet_block_res_samples,) | |
| return SanaControlNetOutput(controlnet_block_samples=controlnet_block_res_samples) | |