Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Dict, List, Optional, Union | |
| from ..utils import is_transformers_available, logging | |
| from .auto import DiffusersAutoQuantizer | |
| from .base import DiffusersQuantizer | |
| from .quantization_config import QuantizationConfigMixin as DiffQuantConfigMixin | |
| try: | |
| from transformers.utils.quantization_config import QuantizationConfigMixin as TransformersQuantConfigMixin | |
| except ImportError: | |
| class TransformersQuantConfigMixin: | |
| pass | |
| logger = logging.get_logger(__name__) | |
| class PipelineQuantizationConfig: | |
| """ | |
| Configuration class to be used when applying quantization on-the-fly to [`~DiffusionPipeline.from_pretrained`]. | |
| Args: | |
| quant_backend (`str`): Quantization backend to be used. When using this option, we assume that the backend | |
| is available to both `diffusers` and `transformers`. | |
| quant_kwargs (`dict`): Params to initialize the quantization backend class. | |
| components_to_quantize (`list`): Components of a pipeline to be quantized. | |
| quant_mapping (`dict`): Mapping defining the quantization specs to be used for the pipeline | |
| components. When using this argument, users are not expected to provide `quant_backend`, `quant_kawargs`, | |
| and `components_to_quantize`. | |
| """ | |
| def __init__( | |
| self, | |
| quant_backend: str = None, | |
| quant_kwargs: Dict[str, Union[str, float, int, dict]] = None, | |
| components_to_quantize: Optional[List[str]] = None, | |
| quant_mapping: Dict[str, Union[DiffQuantConfigMixin, "TransformersQuantConfigMixin"]] = None, | |
| ): | |
| self.quant_backend = quant_backend | |
| # Initialize kwargs to be {} to set to the defaults. | |
| self.quant_kwargs = quant_kwargs or {} | |
| self.components_to_quantize = components_to_quantize | |
| self.quant_mapping = quant_mapping | |
| self.post_init() | |
| def post_init(self): | |
| quant_mapping = self.quant_mapping | |
| self.is_granular = True if quant_mapping is not None else False | |
| self._validate_init_args() | |
| def _validate_init_args(self): | |
| if self.quant_backend and self.quant_mapping: | |
| raise ValueError("Both `quant_backend` and `quant_mapping` cannot be specified at the same time.") | |
| if not self.quant_mapping and not self.quant_backend: | |
| raise ValueError("Must provide a `quant_backend` when not providing a `quant_mapping`.") | |
| if not self.quant_kwargs and not self.quant_mapping: | |
| raise ValueError("Both `quant_kwargs` and `quant_mapping` cannot be None.") | |
| if self.quant_backend is not None: | |
| self._validate_init_kwargs_in_backends() | |
| if self.quant_mapping is not None: | |
| self._validate_quant_mapping_args() | |
| def _validate_init_kwargs_in_backends(self): | |
| quant_backend = self.quant_backend | |
| self._check_backend_availability(quant_backend) | |
| quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
| if quant_config_mapping_transformers is not None: | |
| init_kwargs_transformers = inspect.signature(quant_config_mapping_transformers[quant_backend].__init__) | |
| init_kwargs_transformers = {name for name in init_kwargs_transformers.parameters if name != "self"} | |
| else: | |
| init_kwargs_transformers = None | |
| init_kwargs_diffusers = inspect.signature(quant_config_mapping_diffusers[quant_backend].__init__) | |
| init_kwargs_diffusers = {name for name in init_kwargs_diffusers.parameters if name != "self"} | |
| if init_kwargs_transformers != init_kwargs_diffusers: | |
| raise ValueError( | |
| "The signatures of the __init__ methods of the quantization config classes in `diffusers` and `transformers` don't match. " | |
| f"Please provide a `quant_mapping` instead, in the {self.__class__.__name__} class. Refer to [the docs](https://huggingface.co/docs/diffusers/main/en/quantization/overview#pipeline-level-quantization) to learn more about how " | |
| "this mapping would look like." | |
| ) | |
| def _validate_quant_mapping_args(self): | |
| quant_mapping = self.quant_mapping | |
| transformers_map, diffusers_map = self._get_quant_config_list() | |
| available_transformers = list(transformers_map.values()) if transformers_map else None | |
| available_diffusers = list(diffusers_map.values()) | |
| for module_name, config in quant_mapping.items(): | |
| if any(isinstance(config, cfg) for cfg in available_diffusers): | |
| continue | |
| if available_transformers and any(isinstance(config, cfg) for cfg in available_transformers): | |
| continue | |
| if available_transformers: | |
| raise ValueError( | |
| f"Provided config for module_name={module_name} could not be found. " | |
| f"Available diffusers configs: {available_diffusers}; " | |
| f"Available transformers configs: {available_transformers}." | |
| ) | |
| else: | |
| raise ValueError( | |
| f"Provided config for module_name={module_name} could not be found. " | |
| f"Available diffusers configs: {available_diffusers}." | |
| ) | |
| def _check_backend_availability(self, quant_backend: str): | |
| quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
| available_backends_transformers = ( | |
| list(quant_config_mapping_transformers.keys()) if quant_config_mapping_transformers else None | |
| ) | |
| available_backends_diffusers = list(quant_config_mapping_diffusers.keys()) | |
| if ( | |
| available_backends_transformers and quant_backend not in available_backends_transformers | |
| ) or quant_backend not in quant_config_mapping_diffusers: | |
| error_message = f"Provided quant_backend={quant_backend} was not found." | |
| if available_backends_transformers: | |
| error_message += f"\nAvailable ones (transformers): {available_backends_transformers}." | |
| error_message += f"\nAvailable ones (diffusers): {available_backends_diffusers}." | |
| raise ValueError(error_message) | |
| def _resolve_quant_config(self, is_diffusers: bool = True, module_name: str = None): | |
| quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
| quant_mapping = self.quant_mapping | |
| components_to_quantize = self.components_to_quantize | |
| # Granular case | |
| if self.is_granular and module_name in quant_mapping: | |
| logger.debug(f"Initializing quantization config class for {module_name}.") | |
| config = quant_mapping[module_name] | |
| return config | |
| # Global config case | |
| else: | |
| should_quantize = False | |
| # Only quantize the modules requested for. | |
| if components_to_quantize and module_name in components_to_quantize: | |
| should_quantize = True | |
| # No specification for `components_to_quantize` means all modules should be quantized. | |
| elif not self.is_granular and not components_to_quantize: | |
| should_quantize = True | |
| if should_quantize: | |
| logger.debug(f"Initializing quantization config class for {module_name}.") | |
| mapping_to_use = quant_config_mapping_diffusers if is_diffusers else quant_config_mapping_transformers | |
| quant_config_cls = mapping_to_use[self.quant_backend] | |
| quant_kwargs = self.quant_kwargs | |
| return quant_config_cls(**quant_kwargs) | |
| # Fallback: no applicable configuration found. | |
| return None | |
| def _get_quant_config_list(self): | |
| if is_transformers_available(): | |
| from transformers.quantizers.auto import ( | |
| AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_transformers, | |
| ) | |
| else: | |
| quant_config_mapping_transformers = None | |
| from ..quantizers.auto import AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_diffusers | |
| return quant_config_mapping_transformers, quant_config_mapping_diffusers | |