Spaces:
Runtime error
Runtime error
| # # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
| # and https://github.com/hojonathanho/diffusion | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..schedulers.scheduling_utils import SchedulerMixin | |
| from ..utils import BaseOutput, logging | |
| from ..utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM | |
| class SCMSchedulerOutput(BaseOutput): | |
| """ | |
| Output class for the scheduler's `step` function output. | |
| Args: | |
| prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
| denoising loop. | |
| pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
| The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
| `pred_original_sample` can be used to preview progress or for guidance. | |
| """ | |
| prev_sample: torch.Tensor | |
| pred_original_sample: Optional[torch.Tensor] = None | |
| class SCMScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| `SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with | |
| non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass | |
| documentation for the generic methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| prediction_type (`str`, defaults to `trigflow`): | |
| Prediction type of the scheduler function. Currently only supports "trigflow". | |
| sigma_data (`float`, defaults to 0.5): | |
| The standard deviation of the noise added during multi-step inference. | |
| """ | |
| # _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
| order = 1 | |
| def __init__( | |
| self, | |
| num_train_timesteps: int = 1000, | |
| prediction_type: str = "trigflow", | |
| sigma_data: float = 0.5, | |
| ): | |
| """ | |
| Initialize the SCM scheduler. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| prediction_type (`str`, defaults to `trigflow`): | |
| Prediction type of the scheduler function. Currently only supports "trigflow". | |
| sigma_data (`float`, defaults to 0.5): | |
| The standard deviation of the noise added during multi-step inference. | |
| """ | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # setable values | |
| self.num_inference_steps = None | |
| self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) | |
| self._step_index = None | |
| self._begin_index = None | |
| def step_index(self): | |
| return self._step_index | |
| def begin_index(self): | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def set_timesteps( | |
| self, | |
| num_inference_steps: int, | |
| timesteps: torch.Tensor = None, | |
| device: Union[str, torch.device] = None, | |
| max_timesteps: float = 1.57080, | |
| intermediate_timesteps: float = 1.3, | |
| ): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| timesteps (`torch.Tensor`, *optional*): | |
| Custom timesteps to use for the denoising process. | |
| max_timesteps (`float`, defaults to 1.57080): | |
| The maximum timestep value used in the SCM scheduler. | |
| intermediate_timesteps (`float`, *optional*, defaults to 1.3): | |
| The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2). | |
| """ | |
| if num_inference_steps > self.config.num_train_timesteps: | |
| raise ValueError( | |
| f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
| f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
| f" maximal {self.config.num_train_timesteps} timesteps." | |
| ) | |
| if timesteps is not None and len(timesteps) != num_inference_steps + 1: | |
| raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.") | |
| if timesteps is not None and max_timesteps is not None: | |
| raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.") | |
| if timesteps is None and max_timesteps is None: | |
| raise ValueError("Should provide either `timesteps` or `max_timesteps`.") | |
| if intermediate_timesteps is not None and num_inference_steps != 2: | |
| raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.") | |
| self.num_inference_steps = num_inference_steps | |
| if timesteps is not None: | |
| if isinstance(timesteps, list): | |
| self.timesteps = torch.tensor(timesteps, device=device).float() | |
| elif isinstance(timesteps, torch.Tensor): | |
| self.timesteps = timesteps.to(device).float() | |
| else: | |
| raise ValueError(f"Unsupported timesteps type: {type(timesteps)}") | |
| elif intermediate_timesteps is not None: | |
| self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float() | |
| else: | |
| # max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here | |
| self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float() | |
| print(f"Set timesteps: {self.timesteps}") | |
| self._step_index = None | |
| self._begin_index = None | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: float, | |
| sample: torch.FloatTensor, | |
| generator: torch.Generator = None, | |
| return_dict: bool = True, | |
| ) -> Union[SCMSchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`float`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`. | |
| Returns: | |
| [`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| # 2. compute alphas, betas | |
| t = self.timesteps[self.step_index + 1] | |
| s = self.timesteps[self.step_index] | |
| # 4. Different Parameterization: | |
| parameterization = self.config.prediction_type | |
| if parameterization == "trigflow": | |
| pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output | |
| else: | |
| raise ValueError(f"Unsupported parameterization: {parameterization}") | |
| # 5. Sample z ~ N(0, I), For MultiStep Inference | |
| # Noise is not used for one-step sampling. | |
| if len(self.timesteps) > 1: | |
| noise = ( | |
| randn_tensor(model_output.shape, device=model_output.device, generator=generator) | |
| * self.config.sigma_data | |
| ) | |
| prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise | |
| else: | |
| prev_sample = pred_x0 | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample, pred_x0) | |
| return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |