Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,11 +9,9 @@ import time
|
|
| 9 |
import re
|
| 10 |
from typing import List, Dict, Tuple, Optional
|
| 11 |
import torch.distributions as dists # Added import
|
| 12 |
-
import traceback # For printing exceptions
|
| 13 |
|
| 14 |
# --- START: Copied Helper functions from generation_utils.py ---
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
def top_p_logits(logits, top_p=None):
|
| 18 |
""" Applies top-p filtering to logits. """
|
| 19 |
if top_p is None or top_p >= 1.0:
|
|
@@ -21,10 +19,8 @@ def top_p_logits(logits, top_p=None):
|
|
| 21 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 22 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 23 |
sorted_indices_to_remove = cumulative_probs > top_p
|
| 24 |
-
# Shift the indices to the right to keep the first token above the threshold
|
| 25 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 26 |
sorted_indices_to_remove[..., 0] = 0
|
| 27 |
-
|
| 28 |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
| 29 |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
| 30 |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
|
@@ -34,10 +30,7 @@ def top_k_logits(logits, top_k=None):
|
|
| 34 |
""" Applies top-k filtering to logits. """
|
| 35 |
if top_k is None or top_k <= 0:
|
| 36 |
return logits
|
| 37 |
-
top_k = min(top_k, logits.size(-1))
|
| 38 |
-
if top_k == logits.size(-1): # Avoid unnecessary computation if k is full size
|
| 39 |
-
return logits
|
| 40 |
-
# Remove all tokens with a probability less than the last token of the top-k
|
| 41 |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 42 |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
| 43 |
return logits
|
|
@@ -45,201 +38,145 @@ def top_k_logits(logits, top_k=None):
|
|
| 45 |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
| 46 |
""" Samples tokens based on logits and calculates confidence. """
|
| 47 |
if temperature > 0:
|
| 48 |
-
# Prevent division by zero or negative temperatures
|
| 49 |
safe_temp = max(temperature, 1e-6)
|
| 50 |
logits = logits / safe_temp
|
| 51 |
-
if top_p is not None and 0.0 < top_p < 1.0:
|
| 52 |
logits = top_p_logits(logits, top_p)
|
| 53 |
-
if top_k is not None and top_k > 0:
|
| 54 |
logits = top_k_logits(logits, top_k)
|
| 55 |
-
|
| 56 |
-
# Ensure logits are not all -inf after filtering, if so, assign uniform probability.
|
| 57 |
-
is_all_neg_inf = torch.all(logits <= torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
|
| 58 |
if torch.any(is_all_neg_inf):
|
| 59 |
-
|
| 60 |
-
uniform_logits = torch.zeros_like(logits) # Uniform logits (zeros before softmax)
|
| 61 |
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
|
| 62 |
-
|
| 63 |
probs = torch.softmax(logits, dim=-1)
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
probs = torch.
|
| 67 |
-
prob_sum_for_norm = probs.sum(dim=-1, keepdim=True)
|
| 68 |
-
# Use a tolerance check for division
|
| 69 |
-
safe_prob_sum_for_norm = torch.where(prob_sum_for_norm > 1e-12, prob_sum_for_norm, torch.ones_like(prob_sum_for_norm))
|
| 70 |
-
probs = probs / safe_prob_sum_for_norm # Re-normalize with safe denominator
|
| 71 |
-
probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs
|
| 72 |
-
|
| 73 |
if temperature > 0:
|
| 74 |
try:
|
| 75 |
-
# Ensure probs sum to 1 before sampling
|
| 76 |
-
probs_sum_check = probs.sum(dim=-1)
|
| 77 |
-
if not torch.all(torch.isclose(probs_sum_check, torch.ones_like(probs_sum_check))):
|
| 78 |
-
# print(f"Warning: Probs do not sum to 1 before sampling ({probs_sum_check}). Re-normalizing.")
|
| 79 |
-
probs = probs / probs.sum(dim=-1, keepdim=True) # Final normalization attempt
|
| 80 |
-
|
| 81 |
x0 = dists.Categorical(probs=probs).sample()
|
| 82 |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 83 |
-
except Exception as e:
|
| 84 |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
|
| 85 |
confidence, x0 = probs.max(dim=-1)
|
| 86 |
-
else:
|
| 87 |
confidence, x0 = probs.max(dim=-1)
|
| 88 |
-
|
| 89 |
if margin_confidence:
|
| 90 |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
| 91 |
-
# Ensure there are at least 2 probabilities to compare
|
| 92 |
top1_probs = sorted_probs[..., 0]
|
| 93 |
-
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else
|
| 94 |
confidence = top1_probs - top2_probs
|
| 95 |
-
|
| 96 |
if neg_entropy:
|
| 97 |
-
epsilon =
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
confidence = torch.sum(probs * log_probs, dim=-1) # This is negative entropy
|
| 101 |
-
|
| 102 |
-
# Ensure confidence is not NaN
|
| 103 |
confidence = torch.nan_to_num(confidence, nan=0.0)
|
| 104 |
-
|
| 105 |
return confidence, x0
|
| 106 |
# --- END: Copied Helper functions ---
|
| 107 |
|
| 108 |
|
| 109 |
-
#
|
| 110 |
-
# Load model configuration to get special token IDs
|
| 111 |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
|
| 112 |
-
# Use AutoModel for the base model loading, relying on trust_remote_code=True
|
| 113 |
-
# for the custom DreamModel class and generation mixin.
|
| 114 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
| 115 |
-
|
| 116 |
-
# Determine device
|
| 117 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 118 |
print(f"Using device: {device}")
|
| 119 |
-
|
| 120 |
-
# Load model and tokenizer
|
| 121 |
print("Loading tokenizer...")
|
| 122 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 123 |
print("Loading model...")
|
| 124 |
-
# Ensure torch_dtype is set appropriately for your hardware if needed
|
| 125 |
model = AutoModel.from_pretrained(
|
| 126 |
model_path,
|
| 127 |
-
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
|
| 128 |
trust_remote_code=True,
|
| 129 |
-
attn_implementation="sdpa"
|
| 130 |
)
|
| 131 |
model = model.to(device).eval()
|
| 132 |
print("Model loaded.")
|
| 133 |
-
|
| 134 |
-
# Constants from Dream's config/tokenizer
|
| 135 |
MASK_TOKEN = tokenizer.mask_token
|
| 136 |
-
MASK_ID = tokenizer.mask_token_id
|
| 137 |
-
PAD_ID = tokenizer.pad_token_id
|
| 138 |
-
EOS_ID = tokenizer.eos_token_id
|
| 139 |
-
|
| 140 |
-
if MASK_ID is None:
|
| 141 |
-
print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...")
|
| 142 |
-
mask_token_special = tokenizer.mask_token
|
| 143 |
-
if mask_token_special:
|
| 144 |
-
MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special)
|
| 145 |
-
print(f"Found MASK_ID from tokenizer: {MASK_ID}")
|
| 146 |
-
else:
|
| 147 |
-
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")
|
| 148 |
-
|
| 149 |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
|
| 150 |
try:
|
| 151 |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
| 152 |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
except KeyError:
|
| 156 |
-
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
|
| 157 |
-
IM_START_ID = None
|
| 158 |
-
IM_END_ID = None
|
| 159 |
|
| 160 |
|
| 161 |
-
# ---
|
| 162 |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
|
| 163 |
-
""" Parses constraints. """
|
| 164 |
constraints = {}
|
| 165 |
-
if not constraints_text:
|
| 166 |
-
return constraints
|
| 167 |
-
|
| 168 |
-
# Simple split on comma, assumes format 'pos:word, pos:word'
|
| 169 |
parts = constraints_text.split(',')
|
| 170 |
-
|
| 171 |
for part in parts:
|
| 172 |
part = part.strip()
|
| 173 |
-
if ':' not in part:
|
| 174 |
-
continue
|
| 175 |
pos_str, word = part.split(':', 1)
|
| 176 |
try:
|
| 177 |
pos = int(pos_str.strip())
|
| 178 |
word = word.strip()
|
| 179 |
token_ids = []
|
| 180 |
-
if word:
|
| 181 |
-
# Add space prefix automatically if pos > 0 and word doesn't start with space
|
| 182 |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
|
| 183 |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
print(f"Warning: Could not tokenize constraint word '{word}'")
|
| 189 |
-
except ValueError:
|
| 190 |
-
print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
|
| 191 |
-
continue # Ignore malformed constraint parts
|
| 192 |
-
except Exception as e:
|
| 193 |
-
print(f"Warning: Error processing constraint '{part}': {e}")
|
| 194 |
-
continue
|
| 195 |
-
|
| 196 |
-
# print(f"Parsed constraints: {constraints}") # Debugging
|
| 197 |
return constraints
|
| 198 |
|
| 199 |
-
|
| 200 |
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
|
| 201 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 202 |
messages = []
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
if assistant_msg is not None:
|
| 208 |
-
|
|
|
|
|
|
|
| 209 |
return messages
|
| 210 |
|
| 211 |
def apply_constraints_to_state(
|
| 212 |
-
x: torch.Tensor,
|
| 213 |
-
|
| 214 |
-
total_length: int,
|
| 215 |
-
parsed_constraints: Dict[int, List[int]],
|
| 216 |
-
current_step: Optional[int] = None # For logging/debugging
|
| 217 |
) -> torch.Tensor:
|
| 218 |
-
""" Applies constraints
|
| 219 |
-
modified_x = x.clone()
|
| 220 |
for rel_pos, word_token_ids in parsed_constraints.items():
|
| 221 |
abs_start_pos = prompt_length + rel_pos
|
| 222 |
abs_end_pos = abs_start_pos + len(word_token_ids)
|
| 223 |
-
|
| 224 |
-
# Ensure the constraint fits within the generation length
|
| 225 |
if abs_start_pos < total_length and abs_end_pos <= total_length:
|
| 226 |
try:
|
| 227 |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
|
| 228 |
-
# Force the constraint tokens onto the sequence
|
| 229 |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
|
| 230 |
-
except IndexError:
|
| 231 |
-
|
| 232 |
-
except Exception as e:
|
| 233 |
-
print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
|
| 234 |
return modified_x
|
| 235 |
|
| 236 |
|
| 237 |
# --- Core Generation Logic with Live Visualization ---
|
| 238 |
|
| 239 |
-
@spaces.GPU
|
| 240 |
-
@torch.no_grad()
|
| 241 |
def generate_dream_response(
|
| 242 |
-
history: List[List[Optional[str]]], #
|
| 243 |
gen_length: int,
|
| 244 |
steps: int,
|
| 245 |
constraints_text: str,
|
|
@@ -249,19 +186,17 @@ def generate_dream_response(
|
|
| 249 |
alg: str,
|
| 250 |
alg_temp: Optional[float],
|
| 251 |
visualization_delay: float
|
| 252 |
-
) ->
|
| 253 |
""" Generates text step-by-step and yields visualization states live. """
|
| 254 |
|
| 255 |
-
#
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
# Yield the original history back if there's no input
|
| 260 |
-
yield history, [("No input message found.", "red")], ""
|
| 261 |
return
|
| 262 |
|
| 263 |
# --- 1. Preparation ---
|
| 264 |
-
|
| 265 |
messages_for_template = format_chat_history(history)
|
| 266 |
parsed_constraints = parse_constraints(constraints_text)
|
| 267 |
|
|
@@ -270,13 +205,17 @@ def generate_dream_response(
|
|
| 270 |
messages_for_template,
|
| 271 |
return_tensors="pt",
|
| 272 |
return_dict=True,
|
| 273 |
-
add_generation_prompt=True
|
| 274 |
)
|
| 275 |
input_ids = inputs.input_ids.to(device)
|
| 276 |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
|
| 277 |
prompt_length = input_ids.shape[1]
|
|
|
|
|
|
|
|
|
|
| 278 |
except Exception as e:
|
| 279 |
print(f"Error applying chat template: {e}")
|
|
|
|
| 280 |
yield history, [("Error preparing input.", "red")], ""
|
| 281 |
return
|
| 282 |
|
|
@@ -290,103 +229,89 @@ def generate_dream_response(
|
|
| 290 |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
| 291 |
x = torch.cat((input_ids, initial_generation_part), dim=1)
|
| 292 |
|
|
|
|
| 293 |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
|
| 294 |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
|
| 295 |
-
|
| 296 |
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
|
| 297 |
large_neg_val = torch.finfo(model.dtype).min
|
| 298 |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
|
| 299 |
-
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
|
| 300 |
|
| 301 |
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
| 302 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
|
| 303 |
|
| 304 |
-
# --- 3. Visualization Setup ---
|
| 305 |
previous_tokens_vis = None
|
| 306 |
-
|
| 307 |
-
# history_copy
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
# --- 4. Initial Yield (Masked State) ---
|
| 310 |
initial_generated_tokens = x[0, prompt_length:].cpu()
|
| 311 |
vis_data_initial = []
|
| 312 |
for tok_id in initial_generated_tokens.tolist():
|
| 313 |
-
|
| 314 |
-
color = "#444444"
|
| 315 |
-
vis_data_initial.append((display_token, color))
|
| 316 |
-
|
| 317 |
previous_tokens_vis = initial_generated_tokens
|
| 318 |
-
# Yield the current
|
| 319 |
-
yield
|
| 320 |
time.sleep(visualization_delay)
|
| 321 |
|
| 322 |
# --- 5. Step-by-Step Diffusion Loop ---
|
| 323 |
try:
|
| 324 |
start_time = time.time()
|
|
|
|
|
|
|
| 325 |
for i in range(steps):
|
| 326 |
mask_index = (x == MASK_ID)
|
| 327 |
if not mask_index.any():
|
| 328 |
print(f"No mask tokens left at step {i}. Stopping early.")
|
| 329 |
break
|
| 330 |
|
| 331 |
-
# --- Model Forward Pass ---
|
| 332 |
outputs = model(
|
| 333 |
input_ids=x,
|
| 334 |
attention_mask=attention_mask_for_model,
|
| 335 |
-
position_ids=None,
|
| 336 |
-
use_cache=False,
|
| 337 |
-
return_dict=True
|
| 338 |
)
|
| 339 |
logits = outputs.logits
|
| 340 |
-
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
| 341 |
|
| 342 |
mask_logits = logits[mask_index]
|
| 343 |
if mask_logits.numel() == 0:
|
| 344 |
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
|
| 345 |
break
|
| 346 |
|
| 347 |
-
|
| 348 |
-
t = timesteps[i]
|
| 349 |
-
s = timesteps[i + 1]
|
| 350 |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
|
| 351 |
|
| 352 |
-
# [
|
| 353 |
if alg == 'origin':
|
| 354 |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
|
| 355 |
num_masked = mask_logits.shape[0]
|
| 356 |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
|
| 357 |
logits_to_sample = mask_logits[transfer_indices_relative]
|
| 358 |
-
|
| 359 |
if logits_to_sample.numel() > 0:
|
| 360 |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
|
| 361 |
x_new_masked_part[transfer_indices_relative] = sampled_tokens
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
use_margin = (alg == 'topk_margin')
|
| 365 |
-
use_entropy = (alg == 'entropy')
|
| 366 |
confidence, x0_candidates = sample_tokens(
|
| 367 |
-
mask_logits,
|
| 368 |
-
|
| 369 |
-
top_p=top_p_val,
|
| 370 |
-
top_k=top_k_val,
|
| 371 |
-
margin_confidence=use_margin,
|
| 372 |
-
neg_entropy=use_entropy
|
| 373 |
)
|
| 374 |
-
|
| 375 |
num_mask_token = mask_logits.shape[0]
|
| 376 |
target_num_revealed_float = num_mask_token * (1.0 - s / t)
|
| 377 |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
|
| 378 |
-
|
| 379 |
if number_transfer_tokens > 0:
|
| 380 |
num_samples = min(number_transfer_tokens, num_mask_token)
|
| 381 |
if num_samples > 0:
|
| 382 |
-
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) #
|
| 383 |
-
if alg_temp_val is None or alg_temp_val <= 0: # Top-k
|
| 384 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
| 385 |
k_topk = min(num_samples, sort_metric.numel())
|
| 386 |
-
if k_topk > 0:
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
else: # Sample based on confidence temperature
|
| 390 |
if confidence.numel() > 0:
|
| 391 |
conf_probs = confidence / alg_temp_val
|
| 392 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
|
|
@@ -394,41 +319,26 @@ def generate_dream_response(
|
|
| 394 |
conf_probs = F.softmax(conf_probs, dim=-1)
|
| 395 |
conf_probs = torch.clamp(conf_probs, min=0.0)
|
| 396 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
|
| 397 |
-
|
| 398 |
prob_sum = conf_probs.sum()
|
| 399 |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
|
| 400 |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
|
| 401 |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
|
| 402 |
conf_probs = conf_probs / safe_prob_sum
|
| 403 |
-
|
| 404 |
final_prob_sum_check = conf_probs.sum()
|
| 405 |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
|
| 406 |
-
try:
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
|
| 410 |
-
sort_metric = confidence if alg != 'entropy' else -confidence
|
| 411 |
-
k_multinomial_fallback = min(num_samples, sort_metric.numel())
|
| 412 |
-
if k_multinomial_fallback > 0:
|
| 413 |
-
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
|
| 414 |
-
else:
|
| 415 |
-
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.")
|
| 416 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
| 417 |
-
|
| 418 |
-
if
|
| 419 |
-
|
| 420 |
-
# else: # No confidence values to sample from, transfer_indices_relative remains empty
|
| 421 |
-
|
| 422 |
-
# Apply the transfer
|
| 423 |
if transfer_indices_relative.numel() > 0:
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
else:
|
| 430 |
-
print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")
|
| 431 |
-
# --- End Sampling Logic ---
|
| 432 |
|
| 433 |
x[mask_index] = x_new_masked_part
|
| 434 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
|
|
@@ -436,7 +346,7 @@ def generate_dream_response(
|
|
| 436 |
# --- Yield Visualization ---
|
| 437 |
current_generated_tokens = x[0, prompt_length:].cpu()
|
| 438 |
vis_data = []
|
| 439 |
-
# [
|
| 440 |
for j in range(gen_length):
|
| 441 |
current_tok_id = current_generated_tokens[j].item()
|
| 442 |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
|
@@ -448,25 +358,30 @@ def generate_dream_response(
|
|
| 448 |
if current_tok_id == MASK_ID: color = "#444444"
|
| 449 |
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
| 450 |
else: color = "#6699CC"
|
| 451 |
-
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or
|
| 452 |
-
(EOS_ID is not None and current_tok_id == EOS_ID)
|
| 453 |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
| 454 |
if token_to_display: vis_data.append((token_to_display, color))
|
| 455 |
-
# ---
|
| 456 |
|
| 457 |
previous_tokens_vis = current_generated_tokens
|
| 458 |
|
|
|
|
| 459 |
intermediate_response_tokens = x[0, prompt_length:]
|
| 460 |
-
|
| 461 |
intermediate_response_tokens,
|
| 462 |
skip_special_tokens=True,
|
| 463 |
clean_up_tokenization_spaces=True
|
| 464 |
).strip()
|
| 465 |
|
| 466 |
-
#
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
time.sleep(visualization_delay)
|
| 469 |
-
|
| 470 |
|
| 471 |
end_time = time.time()
|
| 472 |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
|
|
@@ -480,41 +395,43 @@ def generate_dream_response(
|
|
| 480 |
clean_up_tokenization_spaces=True
|
| 481 |
).strip()
|
| 482 |
|
| 483 |
-
#
|
| 484 |
-
if
|
| 485 |
-
|
| 486 |
-
# Now the list referenced by _chat_history_store is updated.
|
| 487 |
|
|
|
|
| 488 |
final_generated_tokens = x[0, prompt_length:].cpu()
|
| 489 |
vis_data_final = []
|
| 490 |
-
# [
|
| 491 |
for j in range(gen_length):
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
yield history, vis_data_final, final_response_text
|
| 510 |
print("Visualization streaming complete.")
|
| 511 |
|
| 512 |
except Exception as e:
|
| 513 |
print(f"Error during generation or processing: {e}")
|
| 514 |
import traceback
|
| 515 |
traceback.print_exc()
|
| 516 |
-
#
|
| 517 |
-
|
|
|
|
|
|
|
|
|
|
| 518 |
return
|
| 519 |
|
| 520 |
|
|
@@ -528,13 +445,12 @@ def create_chatbot_demo():
|
|
| 528 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
| 529 |
gr.Markdown(
|
| 530 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
| 531 |
-
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
|
| 532 |
)
|
| 533 |
|
| 534 |
-
#
|
| 535 |
-
|
| 536 |
|
| 537 |
-
# UI COMPONENTS
|
| 538 |
with gr.Row():
|
| 539 |
with gr.Column(scale=3):
|
| 540 |
chatbot_ui = gr.Chatbot(
|
|
@@ -542,39 +458,31 @@ def create_chatbot_demo():
|
|
| 542 |
height=500,
|
| 543 |
show_copy_button=True,
|
| 544 |
bubble_full_width=False,
|
|
|
|
| 545 |
)
|
| 546 |
with gr.Group():
|
| 547 |
with gr.Row():
|
| 548 |
user_input = gr.Textbox(
|
| 549 |
-
label="Your Message",
|
| 550 |
-
|
| 551 |
-
scale=7,
|
| 552 |
-
autofocus=True,
|
| 553 |
-
show_label=False,
|
| 554 |
-
container=False
|
| 555 |
)
|
| 556 |
send_btn = gr.Button("Send", scale=1, variant="primary")
|
| 557 |
constraints_input = gr.Textbox(
|
| 558 |
label="Word Constraints (Optional)",
|
| 559 |
-
info="
|
| 560 |
-
placeholder="0:Hello, 10:world",
|
| 561 |
-
value=""
|
| 562 |
)
|
| 563 |
with gr.Column(scale=2):
|
| 564 |
output_vis = gr.HighlightedText(
|
| 565 |
-
label="Denoising Process Visualization",
|
| 566 |
-
|
| 567 |
-
show_legend=True,
|
| 568 |
-
interactive=False
|
| 569 |
)
|
| 570 |
response_text_display = gr.Textbox(
|
| 571 |
-
label="Generated Response",
|
| 572 |
-
interactive=False,
|
| 573 |
-
lines=5
|
| 574 |
)
|
| 575 |
|
| 576 |
-
# Advanced generation settings
|
| 577 |
with gr.Accordion("Generation Settings", open=False):
|
|
|
|
| 578 |
with gr.Row():
|
| 579 |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
| 580 |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
|
@@ -589,84 +497,89 @@ def create_chatbot_demo():
|
|
| 589 |
with gr.Row():
|
| 590 |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
|
| 591 |
|
| 592 |
-
|
| 593 |
clear_btn = gr.Button("Clear Conversation")
|
| 594 |
|
| 595 |
-
# --- Event
|
| 596 |
|
| 597 |
-
def
|
| 598 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 599 |
if not message.strip():
|
| 600 |
gr.Warning("Please enter a message.")
|
| 601 |
-
# Return unchanged history
|
| 602 |
-
return
|
| 603 |
-
# Append user message
|
| 604 |
-
|
| 605 |
-
# Return updated history
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
return [], [], "", [], "" #
|
| 612 |
|
| 613 |
# --- Connect UI elements ---
|
| 614 |
|
| 615 |
-
# Define
|
| 616 |
generation_inputs = [
|
| 617 |
-
|
| 618 |
temperature, top_p, top_k, remasking_strategy, alg_temp,
|
| 619 |
visualization_delay
|
| 620 |
]
|
| 621 |
-
#
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
#
|
| 625 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 626 |
|
| 627 |
-
# Handle Textbox Submission (Enter key)
|
| 628 |
submit_listener = user_input.submit(
|
| 629 |
-
fn=
|
| 630 |
-
inputs=
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
)
|
| 634 |
-
# Chain the bot response generation after the user message is added
|
| 635 |
-
submit_listener.then(
|
| 636 |
fn=generate_dream_response,
|
| 637 |
-
inputs=generation_inputs, #
|
| 638 |
-
#
|
| 639 |
-
outputs=generation_outputs, # Maps the final yielded history back to the store
|
| 640 |
show_progress="hidden"
|
| 641 |
)
|
| 642 |
|
| 643 |
-
# Handle Send Button Click
|
| 644 |
click_listener = send_btn.click(
|
| 645 |
-
fn=
|
| 646 |
-
inputs=
|
| 647 |
-
outputs=
|
| 648 |
-
)
|
| 649 |
-
# Chain the bot response generation after the user message is added
|
| 650 |
-
click_listener.then(
|
| 651 |
fn=generate_dream_response,
|
| 652 |
inputs=generation_inputs,
|
| 653 |
-
|
| 654 |
-
outputs=generation_outputs, # Map final history back to store here too
|
| 655 |
show_progress="hidden"
|
| 656 |
)
|
| 657 |
|
| 658 |
-
# Clear Button
|
| 659 |
clear_btn.click(
|
| 660 |
-
|
| 661 |
inputs=[],
|
| 662 |
-
|
| 663 |
-
|
|
|
|
|
|
|
| 664 |
)
|
| 665 |
|
| 666 |
return demo
|
| 667 |
|
|
|
|
| 668 |
# --- Launch ---
|
| 669 |
if __name__ == "__main__":
|
| 670 |
demo = create_chatbot_demo()
|
| 671 |
-
|
| 672 |
-
demo.queue().launch(debug=True, share=False) # Set share=True for public link
|
|
|
|
| 9 |
import re
|
| 10 |
from typing import List, Dict, Tuple, Optional
|
| 11 |
import torch.distributions as dists # Added import
|
|
|
|
| 12 |
|
| 13 |
# --- START: Copied Helper functions from generation_utils.py ---
|
| 14 |
+
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
|
|
|
|
| 15 |
def top_p_logits(logits, top_p=None):
|
| 16 |
""" Applies top-p filtering to logits. """
|
| 17 |
if top_p is None or top_p >= 1.0:
|
|
|
|
| 19 |
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 20 |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 21 |
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
|
| 22 |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 23 |
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
| 24 |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
| 25 |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
| 26 |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
|
|
|
| 30 |
""" Applies top-k filtering to logits. """
|
| 31 |
if top_k is None or top_k <= 0:
|
| 32 |
return logits
|
| 33 |
+
top_k = min(top_k, logits.size(-1))
|
|
|
|
|
|
|
|
|
|
| 34 |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 35 |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
| 36 |
return logits
|
|
|
|
| 38 |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
| 39 |
""" Samples tokens based on logits and calculates confidence. """
|
| 40 |
if temperature > 0:
|
|
|
|
| 41 |
safe_temp = max(temperature, 1e-6)
|
| 42 |
logits = logits / safe_temp
|
| 43 |
+
if top_p is not None and 0.0 < top_p < 1.0:
|
| 44 |
logits = top_p_logits(logits, top_p)
|
| 45 |
+
if top_k is not None and top_k > 0:
|
| 46 |
logits = top_k_logits(logits, top_k)
|
| 47 |
+
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
|
|
|
|
|
|
|
| 48 |
if torch.any(is_all_neg_inf):
|
| 49 |
+
uniform_logits = torch.zeros_like(logits)
|
|
|
|
| 50 |
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
|
|
|
|
| 51 |
probs = torch.softmax(logits, dim=-1)
|
| 52 |
+
probs = torch.clamp(probs, min=0.0)
|
| 53 |
+
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 54 |
+
probs = torch.nan_to_num(probs, nan=0.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if temperature > 0:
|
| 56 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
x0 = dists.Categorical(probs=probs).sample()
|
| 58 |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 59 |
+
except Exception as e:
|
| 60 |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
|
| 61 |
confidence, x0 = probs.max(dim=-1)
|
| 62 |
+
else:
|
| 63 |
confidence, x0 = probs.max(dim=-1)
|
|
|
|
| 64 |
if margin_confidence:
|
| 65 |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
|
|
|
| 66 |
top1_probs = sorted_probs[..., 0]
|
| 67 |
+
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs
|
| 68 |
confidence = top1_probs - top2_probs
|
|
|
|
| 69 |
if neg_entropy:
|
| 70 |
+
epsilon = 1e-10
|
| 71 |
+
log_probs = torch.log(probs + epsilon)
|
| 72 |
+
confidence = torch.sum(probs * log_probs, dim=-1)
|
|
|
|
|
|
|
|
|
|
| 73 |
confidence = torch.nan_to_num(confidence, nan=0.0)
|
|
|
|
| 74 |
return confidence, x0
|
| 75 |
# --- END: Copied Helper functions ---
|
| 76 |
|
| 77 |
|
| 78 |
+
# [Keep model loading, constants]
|
|
|
|
| 79 |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
|
|
|
|
|
|
|
| 80 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
|
|
|
|
|
|
| 81 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 82 |
print(f"Using device: {device}")
|
|
|
|
|
|
|
| 83 |
print("Loading tokenizer...")
|
| 84 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 85 |
print("Loading model...")
|
|
|
|
| 86 |
model = AutoModel.from_pretrained(
|
| 87 |
model_path,
|
| 88 |
+
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
|
| 89 |
trust_remote_code=True,
|
| 90 |
+
attn_implementation="sdpa"
|
| 91 |
)
|
| 92 |
model = model.to(device).eval()
|
| 93 |
print("Model loaded.")
|
|
|
|
|
|
|
| 94 |
MASK_TOKEN = tokenizer.mask_token
|
| 95 |
+
MASK_ID = tokenizer.mask_token_id
|
| 96 |
+
PAD_ID = tokenizer.pad_token_id
|
| 97 |
+
EOS_ID = tokenizer.eos_token_id
|
| 98 |
+
if MASK_ID is None: raise ValueError("Cannot determine MASK_ID.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
|
| 100 |
try:
|
| 101 |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
| 102 |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 103 |
+
SPECIAL_TOKEN_IDS.add(IM_START_ID)
|
| 104 |
+
SPECIAL_TOKEN_IDS.add(IM_END_ID)
|
| 105 |
+
except KeyError: IM_START_ID, IM_END_ID = None, None
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
|
| 108 |
+
# --- Helper Functions ---
|
| 109 |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
|
| 110 |
+
""" Parses word constraints. """
|
| 111 |
constraints = {}
|
| 112 |
+
if not constraints_text: return constraints
|
|
|
|
|
|
|
|
|
|
| 113 |
parts = constraints_text.split(',')
|
|
|
|
| 114 |
for part in parts:
|
| 115 |
part = part.strip()
|
| 116 |
+
if ':' not in part: continue
|
|
|
|
| 117 |
pos_str, word = part.split(':', 1)
|
| 118 |
try:
|
| 119 |
pos = int(pos_str.strip())
|
| 120 |
word = word.strip()
|
| 121 |
token_ids = []
|
| 122 |
+
if word:
|
|
|
|
| 123 |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
|
| 124 |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
|
| 125 |
+
if token_ids and pos >= 0: constraints[pos] = token_ids
|
| 126 |
+
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
|
| 127 |
+
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
|
| 128 |
+
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
return constraints
|
| 130 |
|
|
|
|
| 131 |
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
|
| 132 |
+
"""
|
| 133 |
+
Formats chat history [[user, bot], [user, bot]] into [{'role': 'user', 'content': ...}, ...]
|
| 134 |
+
for the tokenizer's chat template.
|
| 135 |
+
"""
|
| 136 |
messages = []
|
| 137 |
+
# Ensure history is not empty and is properly structured
|
| 138 |
+
if not history:
|
| 139 |
+
return messages
|
| 140 |
+
for turn in history:
|
| 141 |
+
if not isinstance(turn, (list, tuple)) or len(turn) != 2:
|
| 142 |
+
print(f"Warning: Skipping malformed history turn: {turn}")
|
| 143 |
+
continue
|
| 144 |
+
user_msg, assistant_msg = turn
|
| 145 |
+
if user_msg is not None: # Check if user message exists
|
| 146 |
+
# Ensure content is a string
|
| 147 |
+
user_content = str(user_msg) if user_msg is not None else ""
|
| 148 |
+
messages.append({"role": "user", "content": user_content})
|
| 149 |
+
# Add assistant message only if it exists and is not None
|
| 150 |
if assistant_msg is not None:
|
| 151 |
+
assistant_content = str(assistant_msg) if assistant_msg is not None else ""
|
| 152 |
+
messages.append({"role": "assistant", "content": assistant_content})
|
| 153 |
+
# print(f"Formatted messages for template: {messages}") # Debug
|
| 154 |
return messages
|
| 155 |
|
| 156 |
def apply_constraints_to_state(
|
| 157 |
+
x: torch.Tensor, prompt_length: int, total_length: int,
|
| 158 |
+
parsed_constraints: Dict[int, List[int]], current_step: Optional[int] = None
|
|
|
|
|
|
|
|
|
|
| 159 |
) -> torch.Tensor:
|
| 160 |
+
""" Applies constraints to the state tensor `x`. """
|
| 161 |
+
modified_x = x.clone()
|
| 162 |
for rel_pos, word_token_ids in parsed_constraints.items():
|
| 163 |
abs_start_pos = prompt_length + rel_pos
|
| 164 |
abs_end_pos = abs_start_pos + len(word_token_ids)
|
|
|
|
|
|
|
| 165 |
if abs_start_pos < total_length and abs_end_pos <= total_length:
|
| 166 |
try:
|
| 167 |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
|
|
|
|
| 168 |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
|
| 169 |
+
except IndexError: print(f"Warning (Step {current_step}): Constraint OOB: {rel_pos}")
|
| 170 |
+
except Exception as e: print(f"Warning (Step {current_step}): Constraint failed {rel_pos}: {e}")
|
|
|
|
|
|
|
| 171 |
return modified_x
|
| 172 |
|
| 173 |
|
| 174 |
# --- Core Generation Logic with Live Visualization ---
|
| 175 |
|
| 176 |
+
@spaces.GPU
|
| 177 |
+
@torch.no_grad()
|
| 178 |
def generate_dream_response(
|
| 179 |
+
history: List[List[Optional[str]]], # IMPORTANT: This is the *full* history from the state
|
| 180 |
gen_length: int,
|
| 181 |
steps: int,
|
| 182 |
constraints_text: str,
|
|
|
|
| 186 |
alg: str,
|
| 187 |
alg_temp: Optional[float],
|
| 188 |
visualization_delay: float
|
| 189 |
+
): # No return type annotation for generators in older Python? Or use -> Iterator[Tuple[...]]
|
| 190 |
""" Generates text step-by-step and yields visualization states live. """
|
| 191 |
|
| 192 |
+
# Ensure history is valid before proceeding
|
| 193 |
+
if not history or not history[-1] or history[-1][0] is None:
|
| 194 |
+
# Yield the current (potentially empty) history back
|
| 195 |
+
yield history, [("No valid input message found.", "red")], ""
|
|
|
|
|
|
|
| 196 |
return
|
| 197 |
|
| 198 |
# --- 1. Preparation ---
|
| 199 |
+
# Use the *entire* history received from the state for context
|
| 200 |
messages_for_template = format_chat_history(history)
|
| 201 |
parsed_constraints = parse_constraints(constraints_text)
|
| 202 |
|
|
|
|
| 205 |
messages_for_template,
|
| 206 |
return_tensors="pt",
|
| 207 |
return_dict=True,
|
| 208 |
+
add_generation_prompt=True # This adds the assistant prompt turn
|
| 209 |
)
|
| 210 |
input_ids = inputs.input_ids.to(device)
|
| 211 |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
|
| 212 |
prompt_length = input_ids.shape[1]
|
| 213 |
+
# print(f"Prompt length for model: {prompt_length}") # Debug
|
| 214 |
+
# print(f"Input IDs to model (first 50): {input_ids[0, :50].tolist()}") # Debug
|
| 215 |
+
|
| 216 |
except Exception as e:
|
| 217 |
print(f"Error applying chat template: {e}")
|
| 218 |
+
# Yield the current history back with an error message
|
| 219 |
yield history, [("Error preparing input.", "red")], ""
|
| 220 |
return
|
| 221 |
|
|
|
|
| 229 |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
| 230 |
x = torch.cat((input_ids, initial_generation_part), dim=1)
|
| 231 |
|
| 232 |
+
# --- Prepare Attention Mask ---
|
| 233 |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
|
| 234 |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
|
|
|
|
| 235 |
attention_mask_for_model = full_attention_mask_long.to(model.dtype)
|
| 236 |
large_neg_val = torch.finfo(model.dtype).min
|
| 237 |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
|
| 238 |
+
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # Shape [B, 1, 1, N]
|
| 239 |
|
| 240 |
timesteps = torch.linspace(1, eps, steps + 1, device=device)
|
| 241 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
|
| 242 |
|
| 243 |
+
# --- 3. Visualization & State Setup ---
|
| 244 |
previous_tokens_vis = None
|
| 245 |
+
# Use the passed-in history directly. We will modify the *last* item's assistant response.
|
| 246 |
+
# No need for history_copy if we are careful. Let's try modifying `history` directly.
|
| 247 |
+
# IMPORTANT: Gradio state needs the component to receive the *entire object* back if it's mutated.
|
| 248 |
+
# So yielding the modified `history` list itself should work.
|
| 249 |
+
history_for_yield = history # Reference the original list
|
| 250 |
|
| 251 |
# --- 4. Initial Yield (Masked State) ---
|
| 252 |
initial_generated_tokens = x[0, prompt_length:].cpu()
|
| 253 |
vis_data_initial = []
|
| 254 |
for tok_id in initial_generated_tokens.tolist():
|
| 255 |
+
vis_data_initial.append((MASK_TOKEN, "#444444"))
|
|
|
|
|
|
|
|
|
|
| 256 |
previous_tokens_vis = initial_generated_tokens
|
| 257 |
+
# Yield the *current* history (with None for last bot msg)
|
| 258 |
+
yield history_for_yield, vis_data_initial, ""
|
| 259 |
time.sleep(visualization_delay)
|
| 260 |
|
| 261 |
# --- 5. Step-by-Step Diffusion Loop ---
|
| 262 |
try:
|
| 263 |
start_time = time.time()
|
| 264 |
+
current_response_text = "" # Store intermediate text
|
| 265 |
+
|
| 266 |
for i in range(steps):
|
| 267 |
mask_index = (x == MASK_ID)
|
| 268 |
if not mask_index.any():
|
| 269 |
print(f"No mask tokens left at step {i}. Stopping early.")
|
| 270 |
break
|
| 271 |
|
|
|
|
| 272 |
outputs = model(
|
| 273 |
input_ids=x,
|
| 274 |
attention_mask=attention_mask_for_model,
|
| 275 |
+
position_ids=None, use_cache=False, return_dict=True
|
|
|
|
|
|
|
| 276 |
)
|
| 277 |
logits = outputs.logits
|
| 278 |
+
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
| 279 |
|
| 280 |
mask_logits = logits[mask_index]
|
| 281 |
if mask_logits.numel() == 0:
|
| 282 |
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
|
| 283 |
break
|
| 284 |
|
| 285 |
+
t = timesteps[i]; s = timesteps[i + 1]
|
|
|
|
|
|
|
| 286 |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
|
| 287 |
|
| 288 |
+
# [Sampling logic remains the same as previous working version]
|
| 289 |
if alg == 'origin':
|
| 290 |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
|
| 291 |
num_masked = mask_logits.shape[0]
|
| 292 |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
|
| 293 |
logits_to_sample = mask_logits[transfer_indices_relative]
|
|
|
|
| 294 |
if logits_to_sample.numel() > 0:
|
| 295 |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
|
| 296 |
x_new_masked_part[transfer_indices_relative] = sampled_tokens
|
| 297 |
+
else: # Confidence-based
|
| 298 |
+
use_margin = (alg == 'topk_margin'); use_entropy = (alg == 'entropy')
|
|
|
|
|
|
|
| 299 |
confidence, x0_candidates = sample_tokens(
|
| 300 |
+
mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val,
|
| 301 |
+
margin_confidence=use_margin, neg_entropy=use_entropy
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
)
|
|
|
|
| 303 |
num_mask_token = mask_logits.shape[0]
|
| 304 |
target_num_revealed_float = num_mask_token * (1.0 - s / t)
|
| 305 |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
|
|
|
|
| 306 |
if number_transfer_tokens > 0:
|
| 307 |
num_samples = min(number_transfer_tokens, num_mask_token)
|
| 308 |
if num_samples > 0:
|
| 309 |
+
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Init empty
|
| 310 |
+
if alg_temp_val is None or alg_temp_val <= 0: # Top-k
|
| 311 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
| 312 |
k_topk = min(num_samples, sort_metric.numel())
|
| 313 |
+
if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
|
| 314 |
+
else: # Sampled
|
|
|
|
|
|
|
| 315 |
if confidence.numel() > 0:
|
| 316 |
conf_probs = confidence / alg_temp_val
|
| 317 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
|
|
|
|
| 319 |
conf_probs = F.softmax(conf_probs, dim=-1)
|
| 320 |
conf_probs = torch.clamp(conf_probs, min=0.0)
|
| 321 |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
|
|
|
|
| 322 |
prob_sum = conf_probs.sum()
|
| 323 |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
|
| 324 |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
|
| 325 |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
|
| 326 |
conf_probs = conf_probs / safe_prob_sum
|
|
|
|
| 327 |
final_prob_sum_check = conf_probs.sum()
|
| 328 |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
|
| 329 |
+
try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
|
| 330 |
+
except RuntimeError as e: print(f"W{i}: Multinomial failed ('{e}'). Fallback.") # Fallback handled below
|
| 331 |
+
if transfer_indices_relative.numel() == 0: # Fallback if sampling failed or wasn't possible
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
sort_metric = confidence if alg != 'entropy' else -confidence
|
| 333 |
+
k_fallback = min(num_samples, sort_metric.numel())
|
| 334 |
+
if k_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_fallback)
|
| 335 |
+
# Apply transfer
|
|
|
|
|
|
|
|
|
|
| 336 |
if transfer_indices_relative.numel() > 0:
|
| 337 |
+
valid_indices = transfer_indices_relative < x0_candidates.shape[0]
|
| 338 |
+
valid_transfer_indices = transfer_indices_relative[valid_indices]
|
| 339 |
+
if valid_transfer_indices.numel() > 0 and valid_transfer_indices.max() < x_new_masked_part.shape[0]:
|
| 340 |
+
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
|
| 341 |
+
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
x[mask_index] = x_new_masked_part
|
| 344 |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
|
|
|
|
| 346 |
# --- Yield Visualization ---
|
| 347 |
current_generated_tokens = x[0, prompt_length:].cpu()
|
| 348 |
vis_data = []
|
| 349 |
+
# [Visualization formatting logic remains the same]
|
| 350 |
for j in range(gen_length):
|
| 351 |
current_tok_id = current_generated_tokens[j].item()
|
| 352 |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
|
|
|
| 358 |
if current_tok_id == MASK_ID: color = "#444444"
|
| 359 |
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
| 360 |
else: color = "#6699CC"
|
| 361 |
+
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
|
|
|
|
| 362 |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
| 363 |
if token_to_display: vis_data.append((token_to_display, color))
|
| 364 |
+
# ---
|
| 365 |
|
| 366 |
previous_tokens_vis = current_generated_tokens
|
| 367 |
|
| 368 |
+
# --- Update intermediate response text ---
|
| 369 |
intermediate_response_tokens = x[0, prompt_length:]
|
| 370 |
+
current_response_text = tokenizer.decode(
|
| 371 |
intermediate_response_tokens,
|
| 372 |
skip_special_tokens=True,
|
| 373 |
clean_up_tokenization_spaces=True
|
| 374 |
).strip()
|
| 375 |
|
| 376 |
+
# --- Update history for yield ---
|
| 377 |
+
# Update the placeholder in the *last turn* of the history list
|
| 378 |
+
if history_for_yield and history_for_yield[-1]:
|
| 379 |
+
history_for_yield[-1][1] = current_response_text + "..." # Indicate streaming
|
| 380 |
+
|
| 381 |
+
# --- Yield current state ---
|
| 382 |
+
yield history_for_yield, vis_data, current_response_text
|
| 383 |
time.sleep(visualization_delay)
|
| 384 |
+
# --- End loop iteration ---
|
| 385 |
|
| 386 |
end_time = time.time()
|
| 387 |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
|
|
|
|
| 395 |
clean_up_tokenization_spaces=True
|
| 396 |
).strip()
|
| 397 |
|
| 398 |
+
# Update the history definitively with the final text
|
| 399 |
+
if history_for_yield and history_for_yield[-1]:
|
| 400 |
+
history_for_yield[-1][1] = final_response_text
|
|
|
|
| 401 |
|
| 402 |
+
# Format final visualization
|
| 403 |
final_generated_tokens = x[0, prompt_length:].cpu()
|
| 404 |
vis_data_final = []
|
| 405 |
+
# [Final visualization formatting logic remains the same]
|
| 406 |
for j in range(gen_length):
|
| 407 |
+
current_tok_id = final_generated_tokens[j].item()
|
| 408 |
+
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
|
| 409 |
+
try:
|
| 410 |
+
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
|
| 411 |
+
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
|
| 412 |
+
except Exception: display_token = f"[ID:{current_tok_id}]"
|
| 413 |
+
color = None; token_to_display = display_token
|
| 414 |
+
if current_tok_id == MASK_ID: color = "#444444"
|
| 415 |
+
elif previous_tok_id == MASK_ID: color = "#66CC66"
|
| 416 |
+
else: color = "#6699CC"
|
| 417 |
+
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID)
|
| 418 |
+
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
|
| 419 |
+
if token_to_display: vis_data_final.append((token_to_display, color))
|
| 420 |
+
# ---
|
| 421 |
+
|
| 422 |
+
# Yield the final state
|
| 423 |
+
yield history_for_yield, vis_data_final, final_response_text
|
|
|
|
| 424 |
print("Visualization streaming complete.")
|
| 425 |
|
| 426 |
except Exception as e:
|
| 427 |
print(f"Error during generation or processing: {e}")
|
| 428 |
import traceback
|
| 429 |
traceback.print_exc()
|
| 430 |
+
# Ensure the history state reflects the error somehow? Or just yield error vis.
|
| 431 |
+
# Yield the history *as it was* when the error occurred.
|
| 432 |
+
if history_for_yield and history_for_yield[-1]:
|
| 433 |
+
history_for_yield[-1][1] = f"<Error: {e}>" # Put error in bot response
|
| 434 |
+
yield history_for_yield, [("Error during generation.", "red")], ""
|
| 435 |
return
|
| 436 |
|
| 437 |
|
|
|
|
| 445 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
| 446 |
gr.Markdown(
|
| 447 |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
|
| 448 |
+
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]"
|
| 449 |
)
|
| 450 |
|
| 451 |
+
# Use a single state variable for the history list
|
| 452 |
+
chat_history_state = gr.State([])
|
| 453 |
|
|
|
|
| 454 |
with gr.Row():
|
| 455 |
with gr.Column(scale=3):
|
| 456 |
chatbot_ui = gr.Chatbot(
|
|
|
|
| 458 |
height=500,
|
| 459 |
show_copy_button=True,
|
| 460 |
bubble_full_width=False,
|
| 461 |
+
# value=[] # Initial value set by state binding later
|
| 462 |
)
|
| 463 |
with gr.Group():
|
| 464 |
with gr.Row():
|
| 465 |
user_input = gr.Textbox(
|
| 466 |
+
label="Your Message", placeholder="Type your message here...",
|
| 467 |
+
scale=7, autofocus=True, show_label=False, container=False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
)
|
| 469 |
send_btn = gr.Button("Send", scale=1, variant="primary")
|
| 470 |
constraints_input = gr.Textbox(
|
| 471 |
label="Word Constraints (Optional)",
|
| 472 |
+
info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
|
| 473 |
+
placeholder="0:Hello, 10:world", value=""
|
|
|
|
| 474 |
)
|
| 475 |
with gr.Column(scale=2):
|
| 476 |
output_vis = gr.HighlightedText(
|
| 477 |
+
label="Denoising Process Visualization", combine_adjacent=True,
|
| 478 |
+
show_legend=False, interactive=False
|
|
|
|
|
|
|
| 479 |
)
|
| 480 |
response_text_display = gr.Textbox(
|
| 481 |
+
label="Generated Response (Live)", interactive=False, lines=5
|
|
|
|
|
|
|
| 482 |
)
|
| 483 |
|
|
|
|
| 484 |
with gr.Accordion("Generation Settings", open=False):
|
| 485 |
+
# [Settings sliders remain the same]
|
| 486 |
with gr.Row():
|
| 487 |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
| 488 |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
|
|
|
| 497 |
with gr.Row():
|
| 498 |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
|
| 499 |
|
| 500 |
+
|
| 501 |
clear_btn = gr.Button("Clear Conversation")
|
| 502 |
|
| 503 |
+
# --- Event Handler Functions ---
|
| 504 |
|
| 505 |
+
def add_user_message(message: str, history: List[List[Optional[str]]]):
|
| 506 |
+
"""
|
| 507 |
+
Adds the user message to the history state and prepares the UI
|
| 508 |
+
for the bot's response (clearing previous outputs).
|
| 509 |
+
"""
|
| 510 |
if not message.strip():
|
| 511 |
gr.Warning("Please enter a message.")
|
| 512 |
+
# Return unchanged history and empty outputs
|
| 513 |
+
return history, history, "", [], ""
|
| 514 |
+
# Append new turn with user message and None placeholder for bot response
|
| 515 |
+
history.append([message, None])
|
| 516 |
+
# Return updated history (for state), history (for immediate UI update),
|
| 517 |
+
# empty input, empty vis, empty response text.
|
| 518 |
+
return history, history, "", [], ""
|
| 519 |
+
|
| 520 |
+
def clear_all():
|
| 521 |
+
"""Clears state and all relevant UI components."""
|
| 522 |
+
return [], [], "", [], "" # state, chatbot, input, vis, response text
|
| 523 |
|
| 524 |
# --- Connect UI elements ---
|
| 525 |
|
| 526 |
+
# Define inputs/outputs for the generator
|
| 527 |
generation_inputs = [
|
| 528 |
+
chat_history_state, gen_length, steps, constraints_input,
|
| 529 |
temperature, top_p, top_k, remasking_strategy, alg_temp,
|
| 530 |
visualization_delay
|
| 531 |
]
|
| 532 |
+
# Generator yields: history_list, vis_data, response_text
|
| 533 |
+
generation_outputs = [chatbot_ui, output_vis, response_text_display]
|
| 534 |
+
|
| 535 |
+
# Chain the actions: Submit/Click -> add_user_message -> generate_dream_response
|
| 536 |
+
|
| 537 |
+
# 1. User submits message (Enter or Button)
|
| 538 |
+
user_interaction = [user_input, chat_history_state]
|
| 539 |
+
outputs_after_user_add = [
|
| 540 |
+
chat_history_state, # Update the state
|
| 541 |
+
chatbot_ui, # Update chatbot UI immediately
|
| 542 |
+
user_input, # Clear user input box
|
| 543 |
+
output_vis, # Clear visualization
|
| 544 |
+
response_text_display # Clear response text box
|
| 545 |
+
]
|
| 546 |
|
|
|
|
| 547 |
submit_listener = user_input.submit(
|
| 548 |
+
fn=add_user_message,
|
| 549 |
+
inputs=user_interaction,
|
| 550 |
+
outputs=outputs_after_user_add
|
| 551 |
+
).then( # 2. Trigger generation AFTER user message is added and UI cleared
|
|
|
|
|
|
|
|
|
|
| 552 |
fn=generate_dream_response,
|
| 553 |
+
inputs=generation_inputs, # Pass the updated state and parameters
|
| 554 |
+
outputs=generation_outputs, # Stream updates to chatbot, vis, text
|
|
|
|
| 555 |
show_progress="hidden"
|
| 556 |
)
|
| 557 |
|
|
|
|
| 558 |
click_listener = send_btn.click(
|
| 559 |
+
fn=add_user_message,
|
| 560 |
+
inputs=user_interaction,
|
| 561 |
+
outputs=outputs_after_user_add
|
| 562 |
+
).then( # 2. Trigger generation AFTER user message is added and UI cleared
|
|
|
|
|
|
|
| 563 |
fn=generate_dream_response,
|
| 564 |
inputs=generation_inputs,
|
| 565 |
+
outputs=generation_outputs,
|
|
|
|
| 566 |
show_progress="hidden"
|
| 567 |
)
|
| 568 |
|
| 569 |
+
# 3. Clear Button
|
| 570 |
clear_btn.click(
|
| 571 |
+
clear_all,
|
| 572 |
inputs=[],
|
| 573 |
+
outputs=[
|
| 574 |
+
chat_history_state, chatbot_ui, user_input,
|
| 575 |
+
output_vis, response_text_display
|
| 576 |
+
]
|
| 577 |
)
|
| 578 |
|
| 579 |
return demo
|
| 580 |
|
| 581 |
+
|
| 582 |
# --- Launch ---
|
| 583 |
if __name__ == "__main__":
|
| 584 |
demo = create_chatbot_demo()
|
| 585 |
+
demo.queue().launch(debug=True, share=False)
|
|
|