Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload 13 files
Browse files- ipadapter/sample_ipadapter_plus.py +87 -0
 - kolors/__init__.py +0 -0
 - kolors/models/__init__.py +0 -0
 - kolors/models/configuration_chatglm.py +61 -0
 - kolors/models/modeling_chatglm.py +1298 -0
 - kolors/models/tokenization_chatglm.py +300 -0
 - kolors/models/unet_2d_condition.py +1318 -0
 - kolors/pipelines/__init__.py +0 -0
 - kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py +841 -0
 - kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.py +948 -0
 - requirements.txt +19 -6
 - scripts/sample.py +42 -0
 - scripts/sampleui.py +110 -0
 
    	
        ipadapter/sample_ipadapter_plus.py
    ADDED
    
    | 
         @@ -0,0 +1,87 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
         
     | 
| 3 | 
         
            +
            from diffusers.utils import load_image
         
     | 
| 4 | 
         
            +
            import os,sys
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
         
     | 
| 7 | 
         
            +
            from kolors.models.modeling_chatglm import ChatGLMModel
         
     | 
| 8 | 
         
            +
            from kolors.models.tokenization_chatglm import ChatGLMTokenizer
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # from diffusers import UNet2DConditionModel, AutoencoderKL
         
     | 
| 11 | 
         
            +
            from diffusers import  AutoencoderKL
         
     | 
| 12 | 
         
            +
            from kolors.models.unet_2d_condition import UNet2DConditionModel
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from diffusers import EulerDiscreteScheduler
         
     | 
| 15 | 
         
            +
            from PIL import Image
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def infer( ip_img_path, prompt ):
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                ckpt_dir = f'{root_dir}/weights/Kolors'
         
     | 
| 23 | 
         
            +
                text_encoder = ChatGLMModel.from_pretrained(
         
     | 
| 24 | 
         
            +
                    f'{ckpt_dir}/text_encoder',
         
     | 
| 25 | 
         
            +
                    torch_dtype=torch.float16).half()
         
     | 
| 26 | 
         
            +
                tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
         
     | 
| 27 | 
         
            +
                vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half()
         
     | 
| 28 | 
         
            +
                scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
         
     | 
| 29 | 
         
            +
                unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                image_encoder = CLIPVisionModelWithProjection.from_pretrained( f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',  ignore_mismatched_sizes=True).to(dtype=torch.float16)
         
     | 
| 32 | 
         
            +
                ip_img_size = 336
         
     | 
| 33 | 
         
            +
                clip_image_processor = CLIPImageProcessor( size=ip_img_size, crop_size=ip_img_size )
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                pipe = StableDiffusionXLPipeline(
         
     | 
| 36 | 
         
            +
                        vae=vae,
         
     | 
| 37 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 38 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 39 | 
         
            +
                        unet=unet,
         
     | 
| 40 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 41 | 
         
            +
                        image_encoder=image_encoder,
         
     | 
| 42 | 
         
            +
                        feature_extractor=clip_image_processor,
         
     | 
| 43 | 
         
            +
                        force_zeros_for_empty_prompt=False
         
     | 
| 44 | 
         
            +
                        )
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                pipe = pipe.to("cuda")
         
     | 
| 47 | 
         
            +
                pipe.enable_model_cpu_offload()
         
     | 
| 48 | 
         
            +
                
         
     | 
| 49 | 
         
            +
                if hasattr(pipe.unet, 'encoder_hid_proj'):
         
     | 
| 50 | 
         
            +
                    pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
         
     | 
| 51 | 
         
            +
                
         
     | 
| 52 | 
         
            +
                pipe.load_ip_adapter( f'{root_dir}/weights/Kolors-IP-Adapter-Plus' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                basename = ip_img_path.rsplit('/',1)[-1].rsplit('.',1)[0]
         
     | 
| 55 | 
         
            +
                ip_adapter_img = Image.open( ip_img_path )
         
     | 
| 56 | 
         
            +
                generator = torch.Generator(device="cpu").manual_seed(66)
         
     | 
| 57 | 
         
            +
                
         
     | 
| 58 | 
         
            +
                for scale in [0.5]:
         
     | 
| 59 | 
         
            +
                    pipe.set_ip_adapter_scale([ scale ])
         
     | 
| 60 | 
         
            +
                    # print(prompt)
         
     | 
| 61 | 
         
            +
                    image = pipe(
         
     | 
| 62 | 
         
            +
                        prompt= prompt ,
         
     | 
| 63 | 
         
            +
                        ip_adapter_image=[ ip_adapter_img ],
         
     | 
| 64 | 
         
            +
                        negative_prompt="", 
         
     | 
| 65 | 
         
            +
                        height=1024,
         
     | 
| 66 | 
         
            +
                        width=1024,
         
     | 
| 67 | 
         
            +
                        num_inference_steps= 50, 
         
     | 
| 68 | 
         
            +
                        guidance_scale=5.0,
         
     | 
| 69 | 
         
            +
                        num_images_per_prompt=1,
         
     | 
| 70 | 
         
            +
                        generator=generator,
         
     | 
| 71 | 
         
            +
                    ).images[0]
         
     | 
| 72 | 
         
            +
                    image.save(f'{root_dir}/scripts/outputs/sample_ip_{basename}.jpg')
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 76 | 
         
            +
                import fire
         
     | 
| 77 | 
         
            +
                fire.Fire(infer)
         
     | 
| 78 | 
         
            +
                
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
    	
        kolors/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        kolors/models/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        kolors/models/configuration_chatglm.py
    ADDED
    
    | 
         @@ -0,0 +1,61 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from transformers import PretrainedConfig
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class ChatGLMConfig(PretrainedConfig):
         
     | 
| 5 | 
         
            +
                model_type = "chatglm"
         
     | 
| 6 | 
         
            +
                def __init__(
         
     | 
| 7 | 
         
            +
                    self,
         
     | 
| 8 | 
         
            +
                    num_layers=28,
         
     | 
| 9 | 
         
            +
                    padded_vocab_size=65024,
         
     | 
| 10 | 
         
            +
                    hidden_size=4096,
         
     | 
| 11 | 
         
            +
                    ffn_hidden_size=13696,
         
     | 
| 12 | 
         
            +
                    kv_channels=128,
         
     | 
| 13 | 
         
            +
                    num_attention_heads=32,
         
     | 
| 14 | 
         
            +
                    seq_length=2048,
         
     | 
| 15 | 
         
            +
                    hidden_dropout=0.0,
         
     | 
| 16 | 
         
            +
                    classifier_dropout=None,
         
     | 
| 17 | 
         
            +
                    attention_dropout=0.0,
         
     | 
| 18 | 
         
            +
                    layernorm_epsilon=1e-5,
         
     | 
| 19 | 
         
            +
                    rmsnorm=True,
         
     | 
| 20 | 
         
            +
                    apply_residual_connection_post_layernorm=False,
         
     | 
| 21 | 
         
            +
                    post_layer_norm=True,
         
     | 
| 22 | 
         
            +
                    add_bias_linear=False,
         
     | 
| 23 | 
         
            +
                    add_qkv_bias=False,
         
     | 
| 24 | 
         
            +
                    bias_dropout_fusion=True,
         
     | 
| 25 | 
         
            +
                    multi_query_attention=False,
         
     | 
| 26 | 
         
            +
                    multi_query_group_num=1,
         
     | 
| 27 | 
         
            +
                    apply_query_key_layer_scaling=True,
         
     | 
| 28 | 
         
            +
                    attention_softmax_in_fp32=True,
         
     | 
| 29 | 
         
            +
                    fp32_residual_connection=False,
         
     | 
| 30 | 
         
            +
                    quantization_bit=0,
         
     | 
| 31 | 
         
            +
                    pre_seq_len=None,
         
     | 
| 32 | 
         
            +
                    prefix_projection=False,
         
     | 
| 33 | 
         
            +
                    **kwargs
         
     | 
| 34 | 
         
            +
                ):
         
     | 
| 35 | 
         
            +
                    self.num_layers = num_layers
         
     | 
| 36 | 
         
            +
                    self.vocab_size = padded_vocab_size
         
     | 
| 37 | 
         
            +
                    self.padded_vocab_size = padded_vocab_size
         
     | 
| 38 | 
         
            +
                    self.hidden_size = hidden_size
         
     | 
| 39 | 
         
            +
                    self.ffn_hidden_size = ffn_hidden_size
         
     | 
| 40 | 
         
            +
                    self.kv_channels = kv_channels
         
     | 
| 41 | 
         
            +
                    self.num_attention_heads = num_attention_heads
         
     | 
| 42 | 
         
            +
                    self.seq_length = seq_length
         
     | 
| 43 | 
         
            +
                    self.hidden_dropout = hidden_dropout
         
     | 
| 44 | 
         
            +
                    self.classifier_dropout = classifier_dropout
         
     | 
| 45 | 
         
            +
                    self.attention_dropout = attention_dropout
         
     | 
| 46 | 
         
            +
                    self.layernorm_epsilon = layernorm_epsilon
         
     | 
| 47 | 
         
            +
                    self.rmsnorm = rmsnorm
         
     | 
| 48 | 
         
            +
                    self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
         
     | 
| 49 | 
         
            +
                    self.post_layer_norm = post_layer_norm
         
     | 
| 50 | 
         
            +
                    self.add_bias_linear = add_bias_linear
         
     | 
| 51 | 
         
            +
                    self.add_qkv_bias = add_qkv_bias
         
     | 
| 52 | 
         
            +
                    self.bias_dropout_fusion = bias_dropout_fusion
         
     | 
| 53 | 
         
            +
                    self.multi_query_attention = multi_query_attention
         
     | 
| 54 | 
         
            +
                    self.multi_query_group_num = multi_query_group_num
         
     | 
| 55 | 
         
            +
                    self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
         
     | 
| 56 | 
         
            +
                    self.attention_softmax_in_fp32 = attention_softmax_in_fp32
         
     | 
| 57 | 
         
            +
                    self.fp32_residual_connection = fp32_residual_connection
         
     | 
| 58 | 
         
            +
                    self.quantization_bit = quantization_bit
         
     | 
| 59 | 
         
            +
                    self.pre_seq_len = pre_seq_len
         
     | 
| 60 | 
         
            +
                    self.prefix_projection = prefix_projection
         
     | 
| 61 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
    	
        kolors/models/modeling_chatglm.py
    ADDED
    
    | 
         @@ -0,0 +1,1298 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """ PyTorch ChatGLM model. """
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            import copy
         
     | 
| 5 | 
         
            +
            import warnings
         
     | 
| 6 | 
         
            +
            import re
         
     | 
| 7 | 
         
            +
            import sys
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 11 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 12 | 
         
            +
            from torch import nn
         
     | 
| 13 | 
         
            +
            from torch.nn import CrossEntropyLoss, LayerNorm
         
     | 
| 14 | 
         
            +
            from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
         
     | 
| 15 | 
         
            +
            from torch.nn.utils import skip_init
         
     | 
| 16 | 
         
            +
            from typing import Optional, Tuple, Union, List, Callable, Dict, Any
         
     | 
| 17 | 
         
            +
            from copy import deepcopy
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 20 | 
         
            +
                BaseModelOutputWithPast,
         
     | 
| 21 | 
         
            +
                CausalLMOutputWithPast,
         
     | 
| 22 | 
         
            +
                SequenceClassifierOutputWithPast,
         
     | 
| 23 | 
         
            +
            )
         
     | 
| 24 | 
         
            +
            from transformers.modeling_utils import PreTrainedModel
         
     | 
| 25 | 
         
            +
            from transformers.utils import logging
         
     | 
| 26 | 
         
            +
            from transformers.generation.logits_process import LogitsProcessor
         
     | 
| 27 | 
         
            +
            from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            try:
         
     | 
| 30 | 
         
            +
                from .configuration_chatglm import ChatGLMConfig
         
     | 
| 31 | 
         
            +
            except:
         
     | 
| 32 | 
         
            +
                from configuration_chatglm import ChatGLMConfig
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            # flags required to enable jit fusion kernels
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            if sys.platform != 'darwin':
         
     | 
| 38 | 
         
            +
                torch._C._jit_set_profiling_mode(False)
         
     | 
| 39 | 
         
            +
                torch._C._jit_set_profiling_executor(False)
         
     | 
| 40 | 
         
            +
                torch._C._jit_override_can_fuse_on_cpu(True)
         
     | 
| 41 | 
         
            +
                torch._C._jit_override_can_fuse_on_gpu(True)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
         
     | 
| 46 | 
         
            +
            _CONFIG_FOR_DOC = "ChatGLM6BConfig"
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
         
     | 
| 49 | 
         
            +
                "THUDM/chatglm3-6b-base",
         
     | 
| 50 | 
         
            +
                # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
         
     | 
| 51 | 
         
            +
            ]
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            def default_init(cls, *args, **kwargs):
         
     | 
| 55 | 
         
            +
                return cls(*args, **kwargs)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            class InvalidScoreLogitsProcessor(LogitsProcessor):
         
     | 
| 59 | 
         
            +
                def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
         
     | 
| 60 | 
         
            +
                    if torch.isnan(scores).any() or torch.isinf(scores).any():
         
     | 
| 61 | 
         
            +
                        scores.zero_()
         
     | 
| 62 | 
         
            +
                        scores[..., 5] = 5e4
         
     | 
| 63 | 
         
            +
                    return scores
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            class PrefixEncoder(torch.nn.Module):
         
     | 
| 67 | 
         
            +
                """
         
     | 
| 68 | 
         
            +
                The torch.nn model to encode the prefix
         
     | 
| 69 | 
         
            +
                Input shape: (batch-size, prefix-length)
         
     | 
| 70 | 
         
            +
                Output shape: (batch-size, prefix-length, 2*layers*hidden)
         
     | 
| 71 | 
         
            +
                """
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def __init__(self, config: ChatGLMConfig):
         
     | 
| 74 | 
         
            +
                    super().__init__()
         
     | 
| 75 | 
         
            +
                    self.prefix_projection = config.prefix_projection
         
     | 
| 76 | 
         
            +
                    if self.prefix_projection:
         
     | 
| 77 | 
         
            +
                        # Use a two-layer MLP to encode the prefix
         
     | 
| 78 | 
         
            +
                        kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
         
     | 
| 79 | 
         
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
         
     | 
| 80 | 
         
            +
                        self.trans = torch.nn.Sequential(
         
     | 
| 81 | 
         
            +
                            torch.nn.Linear(kv_size, config.hidden_size),
         
     | 
| 82 | 
         
            +
                            torch.nn.Tanh(),
         
     | 
| 83 | 
         
            +
                            torch.nn.Linear(config.hidden_size, kv_size)
         
     | 
| 84 | 
         
            +
                        )
         
     | 
| 85 | 
         
            +
                    else:
         
     | 
| 86 | 
         
            +
                        self.embedding = torch.nn.Embedding(config.pre_seq_len,
         
     | 
| 87 | 
         
            +
                                                            config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def forward(self, prefix: torch.Tensor):
         
     | 
| 90 | 
         
            +
                    if self.prefix_projection:
         
     | 
| 91 | 
         
            +
                        prefix_tokens = self.embedding(prefix)
         
     | 
| 92 | 
         
            +
                        past_key_values = self.trans(prefix_tokens)
         
     | 
| 93 | 
         
            +
                    else:
         
     | 
| 94 | 
         
            +
                        past_key_values = self.embedding(prefix)
         
     | 
| 95 | 
         
            +
                    return past_key_values
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            def split_tensor_along_last_dim(
         
     | 
| 99 | 
         
            +
                    tensor: torch.Tensor,
         
     | 
| 100 | 
         
            +
                    num_partitions: int,
         
     | 
| 101 | 
         
            +
                    contiguous_split_chunks: bool = False,
         
     | 
| 102 | 
         
            +
            ) -> List[torch.Tensor]:
         
     | 
| 103 | 
         
            +
                """Split a tensor along its last dimension.
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                Arguments:
         
     | 
| 106 | 
         
            +
                    tensor: input tensor.
         
     | 
| 107 | 
         
            +
                    num_partitions: number of partitions to split the tensor
         
     | 
| 108 | 
         
            +
                    contiguous_split_chunks: If True, make each chunk contiguous
         
     | 
| 109 | 
         
            +
                                             in memory.
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                Returns:
         
     | 
| 112 | 
         
            +
                    A list of Tensors
         
     | 
| 113 | 
         
            +
                """
         
     | 
| 114 | 
         
            +
                # Get the size and dimension.
         
     | 
| 115 | 
         
            +
                last_dim = tensor.dim() - 1
         
     | 
| 116 | 
         
            +
                last_dim_size = tensor.size()[last_dim] // num_partitions
         
     | 
| 117 | 
         
            +
                # Split.
         
     | 
| 118 | 
         
            +
                tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
         
     | 
| 119 | 
         
            +
                # Note: torch.split does not create contiguous tensors by default.
         
     | 
| 120 | 
         
            +
                if contiguous_split_chunks:
         
     | 
| 121 | 
         
            +
                    return tuple(chunk.contiguous() for chunk in tensor_list)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                return tensor_list
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            class RotaryEmbedding(nn.Module):
         
     | 
| 127 | 
         
            +
                def __init__(self, dim, original_impl=False, device=None, dtype=None):
         
     | 
| 128 | 
         
            +
                    super().__init__()
         
     | 
| 129 | 
         
            +
                    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
         
     | 
| 130 | 
         
            +
                    self.register_buffer("inv_freq", inv_freq)
         
     | 
| 131 | 
         
            +
                    self.dim = dim
         
     | 
| 132 | 
         
            +
                    self.original_impl = original_impl
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                def forward_impl(
         
     | 
| 135 | 
         
            +
                        self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
         
     | 
| 136 | 
         
            +
                ):
         
     | 
| 137 | 
         
            +
                    """Enhanced Transformer with Rotary Position Embedding.
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
         
     | 
| 140 | 
         
            +
                    transformers/rope/__init__.py. MIT License:
         
     | 
| 141 | 
         
            +
                    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
         
     | 
| 142 | 
         
            +
                    """
         
     | 
| 143 | 
         
            +
                    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
         
     | 
| 144 | 
         
            +
                    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    # Create position indexes `[0, 1, ..., seq_len - 1]`
         
     | 
| 147 | 
         
            +
                    seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    # Calculate the product of position index and $\theta_i$
         
     | 
| 150 | 
         
            +
                    idx_theta = torch.outer(seq_idx, theta).float()
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    # this is to mimic the behaviour of complex32, else we will get different results
         
     | 
| 155 | 
         
            +
                    if dtype in (torch.float16, torch.bfloat16, torch.int8):
         
     | 
| 156 | 
         
            +
                        cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
         
     | 
| 157 | 
         
            +
                    return cache
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                def forward(self, max_seq_len, offset=0):
         
     | 
| 160 | 
         
            +
                    return self.forward_impl(
         
     | 
| 161 | 
         
            +
                        max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
         
     | 
| 162 | 
         
            +
                    )
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            @torch.jit.script
         
     | 
| 166 | 
         
            +
            def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
         
     | 
| 167 | 
         
            +
                # x: [sq, b, np, hn]
         
     | 
| 168 | 
         
            +
                sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
         
     | 
| 169 | 
         
            +
                rot_dim = rope_cache.shape[-2] * 2
         
     | 
| 170 | 
         
            +
                x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
         
     | 
| 171 | 
         
            +
                # truncate to support variable sizes
         
     | 
| 172 | 
         
            +
                rope_cache = rope_cache[:sq]
         
     | 
| 173 | 
         
            +
                xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
         
     | 
| 174 | 
         
            +
                rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
         
     | 
| 175 | 
         
            +
                x_out2 = torch.stack(
         
     | 
| 176 | 
         
            +
                    [
         
     | 
| 177 | 
         
            +
                        xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
         
     | 
| 178 | 
         
            +
                        xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
         
     | 
| 179 | 
         
            +
                    ],
         
     | 
| 180 | 
         
            +
                    -1,
         
     | 
| 181 | 
         
            +
                )
         
     | 
| 182 | 
         
            +
                x_out2 = x_out2.flatten(3)
         
     | 
| 183 | 
         
            +
                return torch.cat((x_out2, x_pass), dim=-1)
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
            class RMSNorm(torch.nn.Module):
         
     | 
| 187 | 
         
            +
                def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
         
     | 
| 188 | 
         
            +
                    super().__init__()
         
     | 
| 189 | 
         
            +
                    self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
         
     | 
| 190 | 
         
            +
                    self.eps = eps
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                def forward(self, hidden_states: torch.Tensor):
         
     | 
| 193 | 
         
            +
                    input_dtype = hidden_states.dtype
         
     | 
| 194 | 
         
            +
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         
     | 
| 195 | 
         
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    return (self.weight * hidden_states).to(input_dtype)
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            class CoreAttention(torch.nn.Module):
         
     | 
| 201 | 
         
            +
                def __init__(self, config: ChatGLMConfig, layer_number):
         
     | 
| 202 | 
         
            +
                    super(CoreAttention, self).__init__()
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
         
     | 
| 205 | 
         
            +
                    self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
         
     | 
| 206 | 
         
            +
                    if self.apply_query_key_layer_scaling:
         
     | 
| 207 | 
         
            +
                        self.attention_softmax_in_fp32 = True
         
     | 
| 208 | 
         
            +
                    self.layer_number = max(1, layer_number)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    projection_size = config.kv_channels * config.num_attention_heads
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    # Per attention head and per partition values.
         
     | 
| 213 | 
         
            +
                    self.hidden_size_per_partition = projection_size
         
     | 
| 214 | 
         
            +
                    self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
         
     | 
| 215 | 
         
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                    coeff = None
         
     | 
| 218 | 
         
            +
                    self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
         
     | 
| 219 | 
         
            +
                    if self.apply_query_key_layer_scaling:
         
     | 
| 220 | 
         
            +
                        coeff = self.layer_number
         
     | 
| 221 | 
         
            +
                        self.norm_factor *= coeff
         
     | 
| 222 | 
         
            +
                    self.coeff = coeff
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                    self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                def forward(self, query_layer, key_layer, value_layer, attention_mask):
         
     | 
| 227 | 
         
            +
                    pytorch_major_version = int(torch.__version__.split('.')[0])
         
     | 
| 228 | 
         
            +
                    if pytorch_major_version >= 2:
         
     | 
| 229 | 
         
            +
                        query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
         
     | 
| 230 | 
         
            +
                        if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
         
     | 
| 231 | 
         
            +
                            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         
     | 
| 232 | 
         
            +
                                                                                             is_causal=True)
         
     | 
| 233 | 
         
            +
                        else:
         
     | 
| 234 | 
         
            +
                            if attention_mask is not None:
         
     | 
| 235 | 
         
            +
                                attention_mask = ~attention_mask
         
     | 
| 236 | 
         
            +
                            context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         
     | 
| 237 | 
         
            +
                                                                                             attention_mask)
         
     | 
| 238 | 
         
            +
                        context_layer = context_layer.permute(2, 0, 1, 3)
         
     | 
| 239 | 
         
            +
                        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         
     | 
| 240 | 
         
            +
                        context_layer = context_layer.reshape(*new_context_layer_shape)
         
     | 
| 241 | 
         
            +
                    else:
         
     | 
| 242 | 
         
            +
                        # Raw attention scores
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                        # [b, np, sq, sk]
         
     | 
| 245 | 
         
            +
                        output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                        # [sq, b, np, hn] -> [sq, b * np, hn]
         
     | 
| 248 | 
         
            +
                        query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
         
     | 
| 249 | 
         
            +
                        # [sk, b, np, hn] -> [sk, b * np, hn]
         
     | 
| 250 | 
         
            +
                        key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                        # preallocting input tensor: [b * np, sq, sk]
         
     | 
| 253 | 
         
            +
                        matmul_input_buffer = torch.empty(
         
     | 
| 254 | 
         
            +
                            output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
         
     | 
| 255 | 
         
            +
                            device=query_layer.device
         
     | 
| 256 | 
         
            +
                        )
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                        # Raw attention scores. [b * np, sq, sk]
         
     | 
| 259 | 
         
            +
                        matmul_result = torch.baddbmm(
         
     | 
| 260 | 
         
            +
                            matmul_input_buffer,
         
     | 
| 261 | 
         
            +
                            query_layer.transpose(0, 1),  # [b * np, sq, hn]
         
     | 
| 262 | 
         
            +
                            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
         
     | 
| 263 | 
         
            +
                            beta=0.0,
         
     | 
| 264 | 
         
            +
                            alpha=(1.0 / self.norm_factor),
         
     | 
| 265 | 
         
            +
                        )
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                        # change view to [b, np, sq, sk]
         
     | 
| 268 | 
         
            +
                        attention_scores = matmul_result.view(*output_size)
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                        # ===========================
         
     | 
| 271 | 
         
            +
                        # Attention probs and dropout
         
     | 
| 272 | 
         
            +
                        # ===========================
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                        # attention scores and attention mask [b, np, sq, sk]
         
     | 
| 275 | 
         
            +
                        if self.attention_softmax_in_fp32:
         
     | 
| 276 | 
         
            +
                            attention_scores = attention_scores.float()
         
     | 
| 277 | 
         
            +
                        if self.coeff is not None:
         
     | 
| 278 | 
         
            +
                            attention_scores = attention_scores * self.coeff
         
     | 
| 279 | 
         
            +
                        if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
         
     | 
| 280 | 
         
            +
                            attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
         
     | 
| 281 | 
         
            +
                                                        device=attention_scores.device, dtype=torch.bool)
         
     | 
| 282 | 
         
            +
                            attention_mask.tril_()
         
     | 
| 283 | 
         
            +
                            attention_mask = ~attention_mask
         
     | 
| 284 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 285 | 
         
            +
                            attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
         
     | 
| 286 | 
         
            +
                        attention_probs = F.softmax(attention_scores, dim=-1)
         
     | 
| 287 | 
         
            +
                        attention_probs = attention_probs.type_as(value_layer)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                        # This is actually dropping out entire tokens to attend to, which might
         
     | 
| 290 | 
         
            +
                        # seem a bit unusual, but is taken from the original Transformer paper.
         
     | 
| 291 | 
         
            +
                        attention_probs = self.attention_dropout(attention_probs)
         
     | 
| 292 | 
         
            +
                        # =========================
         
     | 
| 293 | 
         
            +
                        # Context layer. [sq, b, hp]
         
     | 
| 294 | 
         
            +
                        # =========================
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                        # value_layer -> context layer.
         
     | 
| 297 | 
         
            +
                        # [sk, b, np, hn] --> [b, np, sq, hn]
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                        # context layer shape: [b, np, sq, hn]
         
     | 
| 300 | 
         
            +
                        output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
         
     | 
| 301 | 
         
            +
                        # change view [sk, b * np, hn]
         
     | 
| 302 | 
         
            +
                        value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
         
     | 
| 303 | 
         
            +
                        # change view [b * np, sq, sk]
         
     | 
| 304 | 
         
            +
                        attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
         
     | 
| 305 | 
         
            +
                        # matmul: [b * np, sq, hn]
         
     | 
| 306 | 
         
            +
                        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
         
     | 
| 307 | 
         
            +
                        # change view [b, np, sq, hn]
         
     | 
| 308 | 
         
            +
                        context_layer = context_layer.view(*output_size)
         
     | 
| 309 | 
         
            +
                        # [b, np, sq, hn] --> [sq, b, np, hn]
         
     | 
| 310 | 
         
            +
                        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
         
     | 
| 311 | 
         
            +
                        # [sq, b, np, hn] --> [sq, b, hp]
         
     | 
| 312 | 
         
            +
                        new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         
     | 
| 313 | 
         
            +
                        context_layer = context_layer.view(*new_context_layer_shape)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    return context_layer
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
            class SelfAttention(torch.nn.Module):
         
     | 
| 319 | 
         
            +
                """Parallel self-attention layer abstract class.
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                Self-attention layer takes input with size [s, b, h]
         
     | 
| 322 | 
         
            +
                and returns output of the same size.
         
     | 
| 323 | 
         
            +
                """
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         
     | 
| 326 | 
         
            +
                    super(SelfAttention, self).__init__()
         
     | 
| 327 | 
         
            +
                    self.layer_number = max(1, layer_number)
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    self.projection_size = config.kv_channels * config.num_attention_heads
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    # Per attention head and per partition values.
         
     | 
| 332 | 
         
            +
                    self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
         
     | 
| 333 | 
         
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    self.multi_query_attention = config.multi_query_attention
         
     | 
| 336 | 
         
            +
                    self.qkv_hidden_size = 3 * self.projection_size
         
     | 
| 337 | 
         
            +
                    if self.multi_query_attention:
         
     | 
| 338 | 
         
            +
                        self.num_multi_query_groups_per_partition = config.multi_query_group_num
         
     | 
| 339 | 
         
            +
                        self.qkv_hidden_size = (
         
     | 
| 340 | 
         
            +
                                self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
         
     | 
| 341 | 
         
            +
                        )
         
     | 
| 342 | 
         
            +
                    self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
         
     | 
| 343 | 
         
            +
                                                     bias=config.add_bias_linear or config.add_qkv_bias,
         
     | 
| 344 | 
         
            +
                                                     device=device, **_config_to_kwargs(config)
         
     | 
| 345 | 
         
            +
                                                     )
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    self.core_attention = CoreAttention(config, self.layer_number)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    # Output.
         
     | 
| 350 | 
         
            +
                    self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
         
     | 
| 351 | 
         
            +
                                           device=device, **_config_to_kwargs(config)
         
     | 
| 352 | 
         
            +
                                           )
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
         
     | 
| 355 | 
         
            +
                    if self.multi_query_attention:
         
     | 
| 356 | 
         
            +
                        num_attention_heads = self.num_multi_query_groups_per_partition
         
     | 
| 357 | 
         
            +
                    else:
         
     | 
| 358 | 
         
            +
                        num_attention_heads = self.num_attention_heads_per_partition
         
     | 
| 359 | 
         
            +
                    return torch.empty(
         
     | 
| 360 | 
         
            +
                        inference_max_sequence_len,
         
     | 
| 361 | 
         
            +
                        batch_size,
         
     | 
| 362 | 
         
            +
                        num_attention_heads,
         
     | 
| 363 | 
         
            +
                        self.hidden_size_per_attention_head,
         
     | 
| 364 | 
         
            +
                        dtype=dtype,
         
     | 
| 365 | 
         
            +
                        device=device,
         
     | 
| 366 | 
         
            +
                    )
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                def forward(
         
     | 
| 369 | 
         
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
         
     | 
| 370 | 
         
            +
                ):
         
     | 
| 371 | 
         
            +
                    # hidden_states: [sq, b, h]
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                    # =================================================
         
     | 
| 374 | 
         
            +
                    # Pre-allocate memory for key-values for inference.
         
     | 
| 375 | 
         
            +
                    # =================================================
         
     | 
| 376 | 
         
            +
                    # =====================
         
     | 
| 377 | 
         
            +
                    # Query, Key, and Value
         
     | 
| 378 | 
         
            +
                    # =====================
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
         
     | 
| 381 | 
         
            +
                    mixed_x_layer = self.query_key_value(hidden_states)
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                    if self.multi_query_attention:
         
     | 
| 384 | 
         
            +
                        (query_layer, key_layer, value_layer) = mixed_x_layer.split(
         
     | 
| 385 | 
         
            +
                            [
         
     | 
| 386 | 
         
            +
                                self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
         
     | 
| 387 | 
         
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         
     | 
| 388 | 
         
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         
     | 
| 389 | 
         
            +
                            ],
         
     | 
| 390 | 
         
            +
                            dim=-1,
         
     | 
| 391 | 
         
            +
                        )
         
     | 
| 392 | 
         
            +
                        query_layer = query_layer.view(
         
     | 
| 393 | 
         
            +
                            query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         
     | 
| 394 | 
         
            +
                        )
         
     | 
| 395 | 
         
            +
                        key_layer = key_layer.view(
         
     | 
| 396 | 
         
            +
                            key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         
     | 
| 397 | 
         
            +
                        )
         
     | 
| 398 | 
         
            +
                        value_layer = value_layer.view(
         
     | 
| 399 | 
         
            +
                            value_layer.size()[:-1]
         
     | 
| 400 | 
         
            +
                            + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         
     | 
| 401 | 
         
            +
                        )
         
     | 
| 402 | 
         
            +
                    else:
         
     | 
| 403 | 
         
            +
                        new_tensor_shape = mixed_x_layer.size()[:-1] + \
         
     | 
| 404 | 
         
            +
                                           (self.num_attention_heads_per_partition,
         
     | 
| 405 | 
         
            +
                                            3 * self.hidden_size_per_attention_head)
         
     | 
| 406 | 
         
            +
                        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                        # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
         
     | 
| 409 | 
         
            +
                        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    # apply relative positional encoding (rotary embedding)
         
     | 
| 412 | 
         
            +
                    if rotary_pos_emb is not None:
         
     | 
| 413 | 
         
            +
                        query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
         
     | 
| 414 | 
         
            +
                        key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    # adjust key and value for inference
         
     | 
| 417 | 
         
            +
                    if kv_cache is not None:
         
     | 
| 418 | 
         
            +
                        cache_k, cache_v = kv_cache
         
     | 
| 419 | 
         
            +
                        key_layer = torch.cat((cache_k, key_layer), dim=0)
         
     | 
| 420 | 
         
            +
                        value_layer = torch.cat((cache_v, value_layer), dim=0)
         
     | 
| 421 | 
         
            +
                    if use_cache:
         
     | 
| 422 | 
         
            +
                        kv_cache = (key_layer, value_layer)
         
     | 
| 423 | 
         
            +
                    else:
         
     | 
| 424 | 
         
            +
                        kv_cache = None
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    if self.multi_query_attention:
         
     | 
| 427 | 
         
            +
                        key_layer = key_layer.unsqueeze(-2)
         
     | 
| 428 | 
         
            +
                        key_layer = key_layer.expand(
         
     | 
| 429 | 
         
            +
                            -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
         
     | 
| 430 | 
         
            +
                        )
         
     | 
| 431 | 
         
            +
                        key_layer = key_layer.contiguous().view(
         
     | 
| 432 | 
         
            +
                            key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         
     | 
| 433 | 
         
            +
                        )
         
     | 
| 434 | 
         
            +
                        value_layer = value_layer.unsqueeze(-2)
         
     | 
| 435 | 
         
            +
                        value_layer = value_layer.expand(
         
     | 
| 436 | 
         
            +
                            -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
         
     | 
| 437 | 
         
            +
                        )
         
     | 
| 438 | 
         
            +
                        value_layer = value_layer.contiguous().view(
         
     | 
| 439 | 
         
            +
                            value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         
     | 
| 440 | 
         
            +
                        )
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                    # ==================================
         
     | 
| 443 | 
         
            +
                    # core attention computation
         
     | 
| 444 | 
         
            +
                    # ==================================
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                    context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                    # =================
         
     | 
| 449 | 
         
            +
                    # Output. [sq, b, h]
         
     | 
| 450 | 
         
            +
                    # =================
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                    output = self.dense(context_layer)
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                    return output, kv_cache
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
            def _config_to_kwargs(args):
         
     | 
| 458 | 
         
            +
                common_kwargs = {
         
     | 
| 459 | 
         
            +
                    "dtype": args.torch_dtype,
         
     | 
| 460 | 
         
            +
                }
         
     | 
| 461 | 
         
            +
                return common_kwargs
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
            class MLP(torch.nn.Module):
         
     | 
| 465 | 
         
            +
                """MLP.
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                MLP will take the input with h hidden state, project it to 4*h
         
     | 
| 468 | 
         
            +
                hidden dimension, perform nonlinear transformation, and project the
         
     | 
| 469 | 
         
            +
                state back into h hidden dimension.
         
     | 
| 470 | 
         
            +
                """
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         
     | 
| 473 | 
         
            +
                    super(MLP, self).__init__()
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                    self.add_bias = config.add_bias_linear
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
                    # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
         
     | 
| 478 | 
         
            +
                    self.dense_h_to_4h = nn.Linear(
         
     | 
| 479 | 
         
            +
                        config.hidden_size,
         
     | 
| 480 | 
         
            +
                        config.ffn_hidden_size * 2,
         
     | 
| 481 | 
         
            +
                        bias=self.add_bias,
         
     | 
| 482 | 
         
            +
                        device=device,
         
     | 
| 483 | 
         
            +
                        **_config_to_kwargs(config)
         
     | 
| 484 | 
         
            +
                    )
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    def swiglu(x):
         
     | 
| 487 | 
         
            +
                        x = torch.chunk(x, 2, dim=-1)
         
     | 
| 488 | 
         
            +
                        return F.silu(x[0]) * x[1]
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                    self.activation_func = swiglu
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                    # Project back to h.
         
     | 
| 493 | 
         
            +
                    self.dense_4h_to_h = nn.Linear(
         
     | 
| 494 | 
         
            +
                        config.ffn_hidden_size,
         
     | 
| 495 | 
         
            +
                        config.hidden_size,
         
     | 
| 496 | 
         
            +
                        bias=self.add_bias,
         
     | 
| 497 | 
         
            +
                        device=device,
         
     | 
| 498 | 
         
            +
                        **_config_to_kwargs(config)
         
     | 
| 499 | 
         
            +
                    )
         
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 502 | 
         
            +
                    # [s, b, 4hp]
         
     | 
| 503 | 
         
            +
                    intermediate_parallel = self.dense_h_to_4h(hidden_states)
         
     | 
| 504 | 
         
            +
                    intermediate_parallel = self.activation_func(intermediate_parallel)
         
     | 
| 505 | 
         
            +
                    # [s, b, h]
         
     | 
| 506 | 
         
            +
                    output = self.dense_4h_to_h(intermediate_parallel)
         
     | 
| 507 | 
         
            +
                    return output
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
            class GLMBlock(torch.nn.Module):
         
     | 
| 511 | 
         
            +
                """A single transformer layer.
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                Transformer layer takes input with size [s, b, h] and returns an
         
     | 
| 514 | 
         
            +
                output of the same size.
         
     | 
| 515 | 
         
            +
                """
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         
     | 
| 518 | 
         
            +
                    super(GLMBlock, self).__init__()
         
     | 
| 519 | 
         
            +
                    self.layer_number = layer_number
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                    LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         
     | 
| 526 | 
         
            +
                    # Layernorm on the input data.
         
     | 
| 527 | 
         
            +
                    self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         
     | 
| 528 | 
         
            +
                                                         dtype=config.torch_dtype)
         
     | 
| 529 | 
         
            +
             
     | 
| 530 | 
         
            +
                    # Self attention.
         
     | 
| 531 | 
         
            +
                    self.self_attention = SelfAttention(config, layer_number, device=device)
         
     | 
| 532 | 
         
            +
                    self.hidden_dropout = config.hidden_dropout
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    # Layernorm on the attention output
         
     | 
| 535 | 
         
            +
                    self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         
     | 
| 536 | 
         
            +
                                                                  dtype=config.torch_dtype)
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                    # MLP
         
     | 
| 539 | 
         
            +
                    self.mlp = MLP(config, device=device)
         
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
                def forward(
         
     | 
| 542 | 
         
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
         
     | 
| 543 | 
         
            +
                ):
         
     | 
| 544 | 
         
            +
                    # hidden_states: [s, b, h]
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                    # Layer norm at the beginning of the transformer layer.
         
     | 
| 547 | 
         
            +
                    layernorm_output = self.input_layernorm(hidden_states)
         
     | 
| 548 | 
         
            +
                    # Self attention.
         
     | 
| 549 | 
         
            +
                    attention_output, kv_cache = self.self_attention(
         
     | 
| 550 | 
         
            +
                        layernorm_output,
         
     | 
| 551 | 
         
            +
                        attention_mask,
         
     | 
| 552 | 
         
            +
                        rotary_pos_emb,
         
     | 
| 553 | 
         
            +
                        kv_cache=kv_cache,
         
     | 
| 554 | 
         
            +
                        use_cache=use_cache
         
     | 
| 555 | 
         
            +
                    )
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                    # Residual connection.
         
     | 
| 558 | 
         
            +
                    if self.apply_residual_connection_post_layernorm:
         
     | 
| 559 | 
         
            +
                        residual = layernorm_output
         
     | 
| 560 | 
         
            +
                    else:
         
     | 
| 561 | 
         
            +
                        residual = hidden_states
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                    layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
         
     | 
| 564 | 
         
            +
                    layernorm_input = residual + layernorm_input
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                    # Layer norm post the self attention.
         
     | 
| 567 | 
         
            +
                    layernorm_output = self.post_attention_layernorm(layernorm_input)
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                    # MLP.
         
     | 
| 570 | 
         
            +
                    mlp_output = self.mlp(layernorm_output)
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    # Second residual connection.
         
     | 
| 573 | 
         
            +
                    if self.apply_residual_connection_post_layernorm:
         
     | 
| 574 | 
         
            +
                        residual = layernorm_output
         
     | 
| 575 | 
         
            +
                    else:
         
     | 
| 576 | 
         
            +
                        residual = layernorm_input
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
         
     | 
| 579 | 
         
            +
                    output = residual + output
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                    return output, kv_cache
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
            class GLMTransformer(torch.nn.Module):
         
     | 
| 585 | 
         
            +
                """Transformer class."""
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         
     | 
| 588 | 
         
            +
                    super(GLMTransformer, self).__init__()
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         
     | 
| 591 | 
         
            +
                    self.post_layer_norm = config.post_layer_norm
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                    # Number of layers.
         
     | 
| 594 | 
         
            +
                    self.num_layers = config.num_layers
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                    # Transformer layers.
         
     | 
| 597 | 
         
            +
                    def build_layer(layer_number):
         
     | 
| 598 | 
         
            +
                        return GLMBlock(config, layer_number, device=device)
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                    self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    if self.post_layer_norm:
         
     | 
| 603 | 
         
            +
                        LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         
     | 
| 604 | 
         
            +
                        # Final layer norm before output.
         
     | 
| 605 | 
         
            +
                        self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         
     | 
| 606 | 
         
            +
                                                             dtype=config.torch_dtype)
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                def _get_layer(self, layer_number):
         
     | 
| 611 | 
         
            +
                    return self.layers[layer_number]
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                def forward(
         
     | 
| 614 | 
         
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
         
     | 
| 615 | 
         
            +
                        use_cache: Optional[bool] = True,
         
     | 
| 616 | 
         
            +
                        output_hidden_states: Optional[bool] = False,
         
     | 
| 617 | 
         
            +
                ):
         
     | 
| 618 | 
         
            +
                    if not kv_caches:
         
     | 
| 619 | 
         
            +
                        kv_caches = [None for _ in range(self.num_layers)]
         
     | 
| 620 | 
         
            +
                    presents = () if use_cache else None
         
     | 
| 621 | 
         
            +
                    if self.gradient_checkpointing and self.training:
         
     | 
| 622 | 
         
            +
                        if use_cache:
         
     | 
| 623 | 
         
            +
                            logger.warning_once(
         
     | 
| 624 | 
         
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 625 | 
         
            +
                            )
         
     | 
| 626 | 
         
            +
                            use_cache = False
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                    all_self_attentions = None
         
     | 
| 629 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 630 | 
         
            +
                    for index in range(self.num_layers):
         
     | 
| 631 | 
         
            +
                        if output_hidden_states:
         
     | 
| 632 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                        layer = self._get_layer(index)
         
     | 
| 635 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 636 | 
         
            +
                            layer_ret = torch.utils.checkpoint.checkpoint(
         
     | 
| 637 | 
         
            +
                                layer,
         
     | 
| 638 | 
         
            +
                                hidden_states,
         
     | 
| 639 | 
         
            +
                                attention_mask,
         
     | 
| 640 | 
         
            +
                                rotary_pos_emb,
         
     | 
| 641 | 
         
            +
                                kv_caches[index],
         
     | 
| 642 | 
         
            +
                                use_cache
         
     | 
| 643 | 
         
            +
                            )
         
     | 
| 644 | 
         
            +
                        else:
         
     | 
| 645 | 
         
            +
                            layer_ret = layer(
         
     | 
| 646 | 
         
            +
                                hidden_states,
         
     | 
| 647 | 
         
            +
                                attention_mask,
         
     | 
| 648 | 
         
            +
                                rotary_pos_emb,
         
     | 
| 649 | 
         
            +
                                kv_cache=kv_caches[index],
         
     | 
| 650 | 
         
            +
                                use_cache=use_cache
         
     | 
| 651 | 
         
            +
                            )
         
     | 
| 652 | 
         
            +
                        hidden_states, kv_cache = layer_ret
         
     | 
| 653 | 
         
            +
                        if use_cache:
         
     | 
| 654 | 
         
            +
                            presents = presents + (kv_cache,)
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    if output_hidden_states:
         
     | 
| 657 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 658 | 
         
            +
             
     | 
| 659 | 
         
            +
                    # Final layer norm.
         
     | 
| 660 | 
         
            +
                    if self.post_layer_norm:
         
     | 
| 661 | 
         
            +
                        hidden_states = self.final_layernorm(hidden_states)
         
     | 
| 662 | 
         
            +
             
     | 
| 663 | 
         
            +
                    return hidden_states, presents, all_hidden_states, all_self_attentions
         
     | 
| 664 | 
         
            +
             
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
            class ChatGLMPreTrainedModel(PreTrainedModel):
         
     | 
| 667 | 
         
            +
                """
         
     | 
| 668 | 
         
            +
                An abstract class to handle weights initialization and
         
     | 
| 669 | 
         
            +
                a simple interface for downloading and loading pretrained models.
         
     | 
| 670 | 
         
            +
                """
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                is_parallelizable = False
         
     | 
| 673 | 
         
            +
                supports_gradient_checkpointing = True
         
     | 
| 674 | 
         
            +
                config_class = ChatGLMConfig
         
     | 
| 675 | 
         
            +
                base_model_prefix = "transformer"
         
     | 
| 676 | 
         
            +
                _no_split_modules = ["GLMBlock"]
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
                def _init_weights(self, module: nn.Module):
         
     | 
| 679 | 
         
            +
                    """Initialize the weights."""
         
     | 
| 680 | 
         
            +
                    return
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                def get_masks(self, input_ids, past_key_values, padding_mask=None):
         
     | 
| 683 | 
         
            +
                    batch_size, seq_length = input_ids.shape
         
     | 
| 684 | 
         
            +
                    full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
         
     | 
| 685 | 
         
            +
                    full_attention_mask.tril_()
         
     | 
| 686 | 
         
            +
                    past_length = 0
         
     | 
| 687 | 
         
            +
                    if past_key_values:
         
     | 
| 688 | 
         
            +
                        past_length = past_key_values[0][0].shape[0]
         
     | 
| 689 | 
         
            +
                    if past_length:
         
     | 
| 690 | 
         
            +
                        full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
         
     | 
| 691 | 
         
            +
                                                                    device=input_ids.device), full_attention_mask), dim=-1)
         
     | 
| 692 | 
         
            +
                    if padding_mask is not None:
         
     | 
| 693 | 
         
            +
                        full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
         
     | 
| 694 | 
         
            +
                    if not past_length and padding_mask is not None:
         
     | 
| 695 | 
         
            +
                        full_attention_mask -= padding_mask.unsqueeze(-1) - 1
         
     | 
| 696 | 
         
            +
                    full_attention_mask = (full_attention_mask < 0.5).bool()
         
     | 
| 697 | 
         
            +
                    full_attention_mask.unsqueeze_(1)
         
     | 
| 698 | 
         
            +
                    return full_attention_mask
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                def get_position_ids(self, input_ids, device):
         
     | 
| 701 | 
         
            +
                    batch_size, seq_length = input_ids.shape
         
     | 
| 702 | 
         
            +
                    position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
         
     | 
| 703 | 
         
            +
                    return position_ids
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 706 | 
         
            +
                    if isinstance(module, GLMTransformer):
         
     | 
| 707 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
            class Embedding(torch.nn.Module):
         
     | 
| 711 | 
         
            +
                """Language model embeddings."""
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         
     | 
| 714 | 
         
            +
                    super(Embedding, self).__init__()
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                    self.hidden_size = config.hidden_size
         
     | 
| 717 | 
         
            +
                    # Word embeddings (parallel).
         
     | 
| 718 | 
         
            +
                    self.word_embeddings = nn.Embedding(
         
     | 
| 719 | 
         
            +
                        config.padded_vocab_size,
         
     | 
| 720 | 
         
            +
                        self.hidden_size,
         
     | 
| 721 | 
         
            +
                        dtype=config.torch_dtype,
         
     | 
| 722 | 
         
            +
                        device=device
         
     | 
| 723 | 
         
            +
                    )
         
     | 
| 724 | 
         
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                def forward(self, input_ids):
         
     | 
| 727 | 
         
            +
                    # Embeddings.
         
     | 
| 728 | 
         
            +
                    words_embeddings = self.word_embeddings(input_ids)
         
     | 
| 729 | 
         
            +
                    embeddings = words_embeddings
         
     | 
| 730 | 
         
            +
                    # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
         
     | 
| 731 | 
         
            +
                    embeddings = embeddings.transpose(0, 1).contiguous()
         
     | 
| 732 | 
         
            +
                    # If the input flag for fp32 residual connection is set, convert for float.
         
     | 
| 733 | 
         
            +
                    if self.fp32_residual_connection:
         
     | 
| 734 | 
         
            +
                        embeddings = embeddings.float()
         
     | 
| 735 | 
         
            +
                    return embeddings
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
            class ChatGLMModel(ChatGLMPreTrainedModel):
         
     | 
| 739 | 
         
            +
                def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
         
     | 
| 740 | 
         
            +
                    super().__init__(config)
         
     | 
| 741 | 
         
            +
                    if empty_init:
         
     | 
| 742 | 
         
            +
                        init_method = skip_init
         
     | 
| 743 | 
         
            +
                    else:
         
     | 
| 744 | 
         
            +
                        init_method = default_init
         
     | 
| 745 | 
         
            +
                    init_kwargs = {}
         
     | 
| 746 | 
         
            +
                    if device is not None:
         
     | 
| 747 | 
         
            +
                        init_kwargs["device"] = device
         
     | 
| 748 | 
         
            +
                    self.embedding = init_method(Embedding, config, **init_kwargs)
         
     | 
| 749 | 
         
            +
                    self.num_layers = config.num_layers
         
     | 
| 750 | 
         
            +
                    self.multi_query_group_num = config.multi_query_group_num
         
     | 
| 751 | 
         
            +
                    self.kv_channels = config.kv_channels
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                    # Rotary positional embeddings
         
     | 
| 754 | 
         
            +
                    self.seq_length = config.seq_length
         
     | 
| 755 | 
         
            +
                    rotary_dim = (
         
     | 
| 756 | 
         
            +
                        config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
         
     | 
| 757 | 
         
            +
                    )
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                    self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
         
     | 
| 760 | 
         
            +
                                                          dtype=config.torch_dtype)
         
     | 
| 761 | 
         
            +
                    self.encoder = init_method(GLMTransformer, config, **init_kwargs)
         
     | 
| 762 | 
         
            +
                    self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
         
     | 
| 763 | 
         
            +
                                                    dtype=config.torch_dtype, **init_kwargs)
         
     | 
| 764 | 
         
            +
                    self.pre_seq_len = config.pre_seq_len
         
     | 
| 765 | 
         
            +
                    self.prefix_projection = config.prefix_projection
         
     | 
| 766 | 
         
            +
                    if self.pre_seq_len is not None:
         
     | 
| 767 | 
         
            +
                        for param in self.parameters():
         
     | 
| 768 | 
         
            +
                            param.requires_grad = False
         
     | 
| 769 | 
         
            +
                        self.prefix_tokens = torch.arange(self.pre_seq_len).long()
         
     | 
| 770 | 
         
            +
                        self.prefix_encoder = PrefixEncoder(config)
         
     | 
| 771 | 
         
            +
                        self.dropout = torch.nn.Dropout(0.1)
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 774 | 
         
            +
                    return self.embedding.word_embeddings
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
                def get_prompt(self, batch_size, device, dtype=torch.half):
         
     | 
| 777 | 
         
            +
                    prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
         
     | 
| 778 | 
         
            +
                    past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
         
     | 
| 779 | 
         
            +
                    past_key_values = past_key_values.view(
         
     | 
| 780 | 
         
            +
                        batch_size,
         
     | 
| 781 | 
         
            +
                        self.pre_seq_len,
         
     | 
| 782 | 
         
            +
                        self.num_layers * 2,
         
     | 
| 783 | 
         
            +
                        self.multi_query_group_num,
         
     | 
| 784 | 
         
            +
                        self.kv_channels
         
     | 
| 785 | 
         
            +
                    )
         
     | 
| 786 | 
         
            +
                    # seq_len, b, nh, hidden_size
         
     | 
| 787 | 
         
            +
                    past_key_values = self.dropout(past_key_values)
         
     | 
| 788 | 
         
            +
                    past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
         
     | 
| 789 | 
         
            +
                    return past_key_values
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
                def forward(
         
     | 
| 792 | 
         
            +
                        self,
         
     | 
| 793 | 
         
            +
                        input_ids,
         
     | 
| 794 | 
         
            +
                        position_ids: Optional[torch.Tensor] = None,
         
     | 
| 795 | 
         
            +
                        attention_mask: Optional[torch.BoolTensor] = None,
         
     | 
| 796 | 
         
            +
                        full_attention_mask: Optional[torch.BoolTensor] = None,
         
     | 
| 797 | 
         
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         
     | 
| 798 | 
         
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 799 | 
         
            +
                        use_cache: Optional[bool] = None,
         
     | 
| 800 | 
         
            +
                        output_hidden_states: Optional[bool] = None,
         
     | 
| 801 | 
         
            +
                        return_dict: Optional[bool] = None,
         
     | 
| 802 | 
         
            +
                ):
         
     | 
| 803 | 
         
            +
                    output_hidden_states = (
         
     | 
| 804 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 805 | 
         
            +
                    )
         
     | 
| 806 | 
         
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 807 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                    batch_size, seq_length = input_ids.shape
         
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 812 | 
         
            +
                        inputs_embeds = self.embedding(input_ids)
         
     | 
| 813 | 
         
            +
             
     | 
| 814 | 
         
            +
                    if self.pre_seq_len is not None:
         
     | 
| 815 | 
         
            +
                        if past_key_values is None:
         
     | 
| 816 | 
         
            +
                            past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
         
     | 
| 817 | 
         
            +
                                                              dtype=inputs_embeds.dtype)
         
     | 
| 818 | 
         
            +
                        if attention_mask is not None:
         
     | 
| 819 | 
         
            +
                            attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
         
     | 
| 820 | 
         
            +
                                                        attention_mask], dim=-1)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                    if full_attention_mask is None:
         
     | 
| 823 | 
         
            +
                        if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
         
     | 
| 824 | 
         
            +
                            full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
         
     | 
| 825 | 
         
            +
             
     | 
| 826 | 
         
            +
                    # Rotary positional embeddings
         
     | 
| 827 | 
         
            +
                    rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
         
     | 
| 828 | 
         
            +
                    if position_ids is not None:
         
     | 
| 829 | 
         
            +
                        rotary_pos_emb = rotary_pos_emb[position_ids]
         
     | 
| 830 | 
         
            +
                    else:
         
     | 
| 831 | 
         
            +
                        rotary_pos_emb = rotary_pos_emb[None, :seq_length]
         
     | 
| 832 | 
         
            +
                    rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    # Run encoder.
         
     | 
| 835 | 
         
            +
                    hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
         
     | 
| 836 | 
         
            +
                        inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
         
     | 
| 837 | 
         
            +
                        kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
         
     | 
| 838 | 
         
            +
                    )
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    if not return_dict:
         
     | 
| 841 | 
         
            +
                        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
         
     | 
| 842 | 
         
            +
             
     | 
| 843 | 
         
            +
                    return BaseModelOutputWithPast(
         
     | 
| 844 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 845 | 
         
            +
                        past_key_values=presents,
         
     | 
| 846 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 847 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 848 | 
         
            +
                    )
         
     | 
| 849 | 
         
            +
             
     | 
| 850 | 
         
            +
                def quantize(self, weight_bit_width: int):
         
     | 
| 851 | 
         
            +
                    from .quantization import quantize
         
     | 
| 852 | 
         
            +
                    quantize(self.encoder, weight_bit_width)
         
     | 
| 853 | 
         
            +
                    return self
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
            class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
         
     | 
| 857 | 
         
            +
                def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
         
     | 
| 858 | 
         
            +
                    super().__init__(config)
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                    self.max_sequence_length = config.max_length
         
     | 
| 861 | 
         
            +
                    self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
         
     | 
| 862 | 
         
            +
                    self.config = config
         
     | 
| 863 | 
         
            +
                    self.quantized = False
         
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
                    if self.config.quantization_bit:
         
     | 
| 866 | 
         
            +
                        self.quantize(self.config.quantization_bit, empty_init=True)
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                def _update_model_kwargs_for_generation(
         
     | 
| 869 | 
         
            +
                        self,
         
     | 
| 870 | 
         
            +
                        outputs: ModelOutput,
         
     | 
| 871 | 
         
            +
                        model_kwargs: Dict[str, Any],
         
     | 
| 872 | 
         
            +
                        is_encoder_decoder: bool = False,
         
     | 
| 873 | 
         
            +
                        standardize_cache_format: bool = False,
         
     | 
| 874 | 
         
            +
                ) -> Dict[str, Any]:
         
     | 
| 875 | 
         
            +
                    # update past_key_values
         
     | 
| 876 | 
         
            +
                    model_kwargs["past_key_values"] = self._extract_past_from_model_output(
         
     | 
| 877 | 
         
            +
                        outputs, standardize_cache_format=standardize_cache_format
         
     | 
| 878 | 
         
            +
                    )
         
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
                    # update attention mask
         
     | 
| 881 | 
         
            +
                    if "attention_mask" in model_kwargs:
         
     | 
| 882 | 
         
            +
                        attention_mask = model_kwargs["attention_mask"]
         
     | 
| 883 | 
         
            +
                        model_kwargs["attention_mask"] = torch.cat(
         
     | 
| 884 | 
         
            +
                            [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
         
     | 
| 885 | 
         
            +
                        )
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
                    # update position ids
         
     | 
| 888 | 
         
            +
                    if "position_ids" in model_kwargs:
         
     | 
| 889 | 
         
            +
                        position_ids = model_kwargs["position_ids"]
         
     | 
| 890 | 
         
            +
                        new_position_id = position_ids[..., -1:].clone()
         
     | 
| 891 | 
         
            +
                        new_position_id += 1
         
     | 
| 892 | 
         
            +
                        model_kwargs["position_ids"] = torch.cat(
         
     | 
| 893 | 
         
            +
                            [position_ids, new_position_id], dim=-1
         
     | 
| 894 | 
         
            +
                        )
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                    model_kwargs["is_first_forward"] = False
         
     | 
| 897 | 
         
            +
                    return model_kwargs
         
     | 
| 898 | 
         
            +
             
     | 
| 899 | 
         
            +
                def prepare_inputs_for_generation(
         
     | 
| 900 | 
         
            +
                        self,
         
     | 
| 901 | 
         
            +
                        input_ids: torch.LongTensor,
         
     | 
| 902 | 
         
            +
                        past_key_values: Optional[torch.Tensor] = None,
         
     | 
| 903 | 
         
            +
                        attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 904 | 
         
            +
                        position_ids: Optional[torch.Tensor] = None,
         
     | 
| 905 | 
         
            +
                        use_cache: Optional[bool] = None,
         
     | 
| 906 | 
         
            +
                        is_first_forward: bool = True,
         
     | 
| 907 | 
         
            +
                        **kwargs
         
     | 
| 908 | 
         
            +
                ) -> dict:
         
     | 
| 909 | 
         
            +
                    # only last token for input_ids if past is not None
         
     | 
| 910 | 
         
            +
                    if position_ids is None:
         
     | 
| 911 | 
         
            +
                        position_ids = self.get_position_ids(input_ids, device=input_ids.device)
         
     | 
| 912 | 
         
            +
                    if not is_first_forward:
         
     | 
| 913 | 
         
            +
                        if past_key_values is not None:
         
     | 
| 914 | 
         
            +
                            position_ids = position_ids[..., -1:]
         
     | 
| 915 | 
         
            +
                            input_ids = input_ids[:, -1:]
         
     | 
| 916 | 
         
            +
                    return {
         
     | 
| 917 | 
         
            +
                        "input_ids": input_ids,
         
     | 
| 918 | 
         
            +
                        "past_key_values": past_key_values,
         
     | 
| 919 | 
         
            +
                        "position_ids": position_ids,
         
     | 
| 920 | 
         
            +
                        "attention_mask": attention_mask,
         
     | 
| 921 | 
         
            +
                        "return_last_logit": True,
         
     | 
| 922 | 
         
            +
                        "use_cache": use_cache
         
     | 
| 923 | 
         
            +
                    }
         
     | 
| 924 | 
         
            +
             
     | 
| 925 | 
         
            +
                def forward(
         
     | 
| 926 | 
         
            +
                        self,
         
     | 
| 927 | 
         
            +
                        input_ids: Optional[torch.Tensor] = None,
         
     | 
| 928 | 
         
            +
                        position_ids: Optional[torch.Tensor] = None,
         
     | 
| 929 | 
         
            +
                        attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 930 | 
         
            +
                        past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
         
     | 
| 931 | 
         
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         
     | 
| 932 | 
         
            +
                        labels: Optional[torch.Tensor] = None,
         
     | 
| 933 | 
         
            +
                        use_cache: Optional[bool] = None,
         
     | 
| 934 | 
         
            +
                        output_attentions: Optional[bool] = None,
         
     | 
| 935 | 
         
            +
                        output_hidden_states: Optional[bool] = None,
         
     | 
| 936 | 
         
            +
                        return_dict: Optional[bool] = None,
         
     | 
| 937 | 
         
            +
                        return_last_logit: Optional[bool] = False,
         
     | 
| 938 | 
         
            +
                ):
         
     | 
| 939 | 
         
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 940 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 941 | 
         
            +
             
     | 
| 942 | 
         
            +
                    transformer_outputs = self.transformer(
         
     | 
| 943 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 944 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 945 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 946 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 947 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 948 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 949 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 950 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 951 | 
         
            +
                    )
         
     | 
| 952 | 
         
            +
             
     | 
| 953 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 954 | 
         
            +
                    if return_last_logit:
         
     | 
| 955 | 
         
            +
                        hidden_states = hidden_states[-1:]
         
     | 
| 956 | 
         
            +
                    lm_logits = self.transformer.output_layer(hidden_states)
         
     | 
| 957 | 
         
            +
                    lm_logits = lm_logits.transpose(0, 1).contiguous()
         
     | 
| 958 | 
         
            +
             
     | 
| 959 | 
         
            +
                    loss = None
         
     | 
| 960 | 
         
            +
                    if labels is not None:
         
     | 
| 961 | 
         
            +
                        lm_logits = lm_logits.to(torch.float32)
         
     | 
| 962 | 
         
            +
             
     | 
| 963 | 
         
            +
                        # Shift so that tokens < n predict n
         
     | 
| 964 | 
         
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         
     | 
| 965 | 
         
            +
                        shift_labels = labels[..., 1:].contiguous()
         
     | 
| 966 | 
         
            +
                        # Flatten the tokens
         
     | 
| 967 | 
         
            +
                        loss_fct = CrossEntropyLoss(ignore_index=-100)
         
     | 
| 968 | 
         
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                        lm_logits = lm_logits.to(hidden_states.dtype)
         
     | 
| 971 | 
         
            +
                        loss = loss.to(hidden_states.dtype)
         
     | 
| 972 | 
         
            +
             
     | 
| 973 | 
         
            +
                    if not return_dict:
         
     | 
| 974 | 
         
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         
     | 
| 975 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                    return CausalLMOutputWithPast(
         
     | 
| 978 | 
         
            +
                        loss=loss,
         
     | 
| 979 | 
         
            +
                        logits=lm_logits,
         
     | 
| 980 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 981 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 982 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 983 | 
         
            +
                    )
         
     | 
| 984 | 
         
            +
             
     | 
| 985 | 
         
            +
                @staticmethod
         
     | 
| 986 | 
         
            +
                def _reorder_cache(
         
     | 
| 987 | 
         
            +
                        past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
         
     | 
| 988 | 
         
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
         
     | 
| 989 | 
         
            +
                    """
         
     | 
| 990 | 
         
            +
                    This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
         
     | 
| 991 | 
         
            +
                    [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
         
     | 
| 992 | 
         
            +
                    beam_idx at every generation step.
         
     | 
| 993 | 
         
            +
             
     | 
| 994 | 
         
            +
                    Output shares the same memory storage as `past`.
         
     | 
| 995 | 
         
            +
                    """
         
     | 
| 996 | 
         
            +
                    return tuple(
         
     | 
| 997 | 
         
            +
                        (
         
     | 
| 998 | 
         
            +
                            layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
         
     | 
| 999 | 
         
            +
                            layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
         
     | 
| 1000 | 
         
            +
                        )
         
     | 
| 1001 | 
         
            +
                        for layer_past in past
         
     | 
| 1002 | 
         
            +
                    )
         
     | 
| 1003 | 
         
            +
             
     | 
| 1004 | 
         
            +
                def process_response(self, output, history):
         
     | 
| 1005 | 
         
            +
                    content = ""
         
     | 
| 1006 | 
         
            +
                    history = deepcopy(history)
         
     | 
| 1007 | 
         
            +
                    for response in output.split("<|assistant|>"):
         
     | 
| 1008 | 
         
            +
                        metadata, content = response.split("\n", maxsplit=1)
         
     | 
| 1009 | 
         
            +
                        if not metadata.strip():
         
     | 
| 1010 | 
         
            +
                            content = content.strip()
         
     | 
| 1011 | 
         
            +
                            history.append({"role": "assistant", "metadata": metadata, "content": content})
         
     | 
| 1012 | 
         
            +
                            content = content.replace("[[训练时间]]", "2023年")
         
     | 
| 1013 | 
         
            +
                        else:
         
     | 
| 1014 | 
         
            +
                            history.append({"role": "assistant", "metadata": metadata, "content": content})
         
     | 
| 1015 | 
         
            +
                            if history[0]["role"] == "system" and "tools" in history[0]:
         
     | 
| 1016 | 
         
            +
                                content = "\n".join(content.split("\n")[1:-1])
         
     | 
| 1017 | 
         
            +
                                def tool_call(**kwargs):
         
     | 
| 1018 | 
         
            +
                                    return kwargs
         
     | 
| 1019 | 
         
            +
                                parameters = eval(content)
         
     | 
| 1020 | 
         
            +
                                content = {"name": metadata.strip(), "parameters": parameters}
         
     | 
| 1021 | 
         
            +
                            else:
         
     | 
| 1022 | 
         
            +
                                content = {"name": metadata.strip(), "content": content}
         
     | 
| 1023 | 
         
            +
                    return content, history
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                @torch.inference_mode()
         
     | 
| 1026 | 
         
            +
                def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
         
     | 
| 1027 | 
         
            +
                         max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
         
     | 
| 1028 | 
         
            +
                         **kwargs):
         
     | 
| 1029 | 
         
            +
                    if history is None:
         
     | 
| 1030 | 
         
            +
                        history = []
         
     | 
| 1031 | 
         
            +
                    if logits_processor is None:
         
     | 
| 1032 | 
         
            +
                        logits_processor = LogitsProcessorList()
         
     | 
| 1033 | 
         
            +
                    logits_processor.append(InvalidScoreLogitsProcessor())
         
     | 
| 1034 | 
         
            +
                    gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
         
     | 
| 1035 | 
         
            +
                                  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         
     | 
| 1036 | 
         
            +
                    inputs = tokenizer.build_chat_input(query, history=history, role=role)
         
     | 
| 1037 | 
         
            +
                    inputs = inputs.to(self.device)
         
     | 
| 1038 | 
         
            +
                    eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
         
     | 
| 1039 | 
         
            +
                                    tokenizer.get_command("<|observation|>")]
         
     | 
| 1040 | 
         
            +
                    outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
         
     | 
| 1041 | 
         
            +
                    outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
         
     | 
| 1042 | 
         
            +
                    response = tokenizer.decode(outputs)
         
     | 
| 1043 | 
         
            +
                    history.append({"role": role, "content": query})
         
     | 
| 1044 | 
         
            +
                    response, history = self.process_response(response, history)
         
     | 
| 1045 | 
         
            +
                    return response, history
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                @torch.inference_mode()
         
     | 
| 1048 | 
         
            +
                def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
         
     | 
| 1049 | 
         
            +
                                past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
         
     | 
| 1050 | 
         
            +
                                logits_processor=None, return_past_key_values=False, **kwargs):
         
     | 
| 1051 | 
         
            +
                    if history is None:
         
     | 
| 1052 | 
         
            +
                        history = []
         
     | 
| 1053 | 
         
            +
                    if logits_processor is None:
         
     | 
| 1054 | 
         
            +
                        logits_processor = LogitsProcessorList()
         
     | 
| 1055 | 
         
            +
                    logits_processor.append(InvalidScoreLogitsProcessor())
         
     | 
| 1056 | 
         
            +
                    eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
         
     | 
| 1057 | 
         
            +
                                    tokenizer.get_command("<|observation|>")]
         
     | 
| 1058 | 
         
            +
                    gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
         
     | 
| 1059 | 
         
            +
                                  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
         
     | 
| 1060 | 
         
            +
                    if past_key_values is None:
         
     | 
| 1061 | 
         
            +
                        inputs = tokenizer.build_chat_input(query, history=history, role=role)
         
     | 
| 1062 | 
         
            +
                    else:
         
     | 
| 1063 | 
         
            +
                        inputs = tokenizer.build_chat_input(query, role=role)
         
     | 
| 1064 | 
         
            +
                    inputs = inputs.to(self.device)
         
     | 
| 1065 | 
         
            +
                    if past_key_values is not None:
         
     | 
| 1066 | 
         
            +
                        past_length = past_key_values[0][0].shape[0]
         
     | 
| 1067 | 
         
            +
                        if self.transformer.pre_seq_len is not None:
         
     | 
| 1068 | 
         
            +
                            past_length -= self.transformer.pre_seq_len
         
     | 
| 1069 | 
         
            +
                        inputs.position_ids += past_length
         
     | 
| 1070 | 
         
            +
                        attention_mask = inputs.attention_mask
         
     | 
| 1071 | 
         
            +
                        attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
         
     | 
| 1072 | 
         
            +
                        inputs['attention_mask'] = attention_mask
         
     | 
| 1073 | 
         
            +
                    history.append({"role": role, "content": query})
         
     | 
| 1074 | 
         
            +
                    for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
         
     | 
| 1075 | 
         
            +
                                                        eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
         
     | 
| 1076 | 
         
            +
                                                        **gen_kwargs):
         
     | 
| 1077 | 
         
            +
                        if return_past_key_values:
         
     | 
| 1078 | 
         
            +
                            outputs, past_key_values = outputs
         
     | 
| 1079 | 
         
            +
                        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
         
     | 
| 1080 | 
         
            +
                        response = tokenizer.decode(outputs)
         
     | 
| 1081 | 
         
            +
                        if response and response[-1] != "�":
         
     | 
| 1082 | 
         
            +
                            response, new_history = self.process_response(response, history)
         
     | 
| 1083 | 
         
            +
                            if return_past_key_values:
         
     | 
| 1084 | 
         
            +
                                yield response, new_history, past_key_values
         
     | 
| 1085 | 
         
            +
                            else:
         
     | 
| 1086 | 
         
            +
                                yield response, new_history
         
     | 
| 1087 | 
         
            +
             
     | 
| 1088 | 
         
            +
                @torch.inference_mode()
         
     | 
| 1089 | 
         
            +
                def stream_generate(
         
     | 
| 1090 | 
         
            +
                        self,
         
     | 
| 1091 | 
         
            +
                        input_ids,
         
     | 
| 1092 | 
         
            +
                        generation_config: Optional[GenerationConfig] = None,
         
     | 
| 1093 | 
         
            +
                        logits_processor: Optional[LogitsProcessorList] = None,
         
     | 
| 1094 | 
         
            +
                        stopping_criteria: Optional[StoppingCriteriaList] = None,
         
     | 
| 1095 | 
         
            +
                        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
         
     | 
| 1096 | 
         
            +
                        return_past_key_values=False,
         
     | 
| 1097 | 
         
            +
                        **kwargs,
         
     | 
| 1098 | 
         
            +
                ):
         
     | 
| 1099 | 
         
            +
                    batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
         
     | 
| 1100 | 
         
            +
             
     | 
| 1101 | 
         
            +
                    if generation_config is None:
         
     | 
| 1102 | 
         
            +
                        generation_config = self.generation_config
         
     | 
| 1103 | 
         
            +
                    generation_config = copy.deepcopy(generation_config)
         
     | 
| 1104 | 
         
            +
                    model_kwargs = generation_config.update(**kwargs)
         
     | 
| 1105 | 
         
            +
                    model_kwargs["use_cache"] = generation_config.use_cache
         
     | 
| 1106 | 
         
            +
                    bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
         
     | 
| 1107 | 
         
            +
             
     | 
| 1108 | 
         
            +
                    if isinstance(eos_token_id, int):
         
     | 
| 1109 | 
         
            +
                        eos_token_id = [eos_token_id]
         
     | 
| 1110 | 
         
            +
                    eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
         
     | 
| 1111 | 
         
            +
             
     | 
| 1112 | 
         
            +
                    has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
         
     | 
| 1113 | 
         
            +
                    if has_default_max_length and generation_config.max_new_tokens is None:
         
     | 
| 1114 | 
         
            +
                        warnings.warn(
         
     | 
| 1115 | 
         
            +
                            f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
         
     | 
| 1116 | 
         
            +
                            "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
         
     | 
| 1117 | 
         
            +
                            " recommend using `max_new_tokens` to control the maximum length of the generation.",
         
     | 
| 1118 | 
         
            +
                            UserWarning,
         
     | 
| 1119 | 
         
            +
                        )
         
     | 
| 1120 | 
         
            +
                    elif generation_config.max_new_tokens is not None:
         
     | 
| 1121 | 
         
            +
                        generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
         
     | 
| 1122 | 
         
            +
                        if not has_default_max_length:
         
     | 
| 1123 | 
         
            +
                            logger.warn(
         
     | 
| 1124 | 
         
            +
                                f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
         
     | 
| 1125 | 
         
            +
                                f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
         
     | 
| 1126 | 
         
            +
                                "Please refer to the documentation for more information. "
         
     | 
| 1127 | 
         
            +
                                "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
         
     | 
| 1128 | 
         
            +
                                UserWarning,
         
     | 
| 1129 | 
         
            +
                            )
         
     | 
| 1130 | 
         
            +
             
     | 
| 1131 | 
         
            +
                    if input_ids_seq_length >= generation_config.max_length:
         
     | 
| 1132 | 
         
            +
                        input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
         
     | 
| 1133 | 
         
            +
                        logger.warning(
         
     | 
| 1134 | 
         
            +
                            f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
         
     | 
| 1135 | 
         
            +
                            f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
         
     | 
| 1136 | 
         
            +
                            " increasing `max_new_tokens`."
         
     | 
| 1137 | 
         
            +
                        )
         
     | 
| 1138 | 
         
            +
             
     | 
| 1139 | 
         
            +
                    # 2. Set generation parameters if not already defined
         
     | 
| 1140 | 
         
            +
                    logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
         
     | 
| 1141 | 
         
            +
                    stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
         
     | 
| 1142 | 
         
            +
             
     | 
| 1143 | 
         
            +
                    logits_processor = self._get_logits_processor(
         
     | 
| 1144 | 
         
            +
                        generation_config=generation_config,
         
     | 
| 1145 | 
         
            +
                        input_ids_seq_length=input_ids_seq_length,
         
     | 
| 1146 | 
         
            +
                        encoder_input_ids=input_ids,
         
     | 
| 1147 | 
         
            +
                        prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
         
     | 
| 1148 | 
         
            +
                        logits_processor=logits_processor,
         
     | 
| 1149 | 
         
            +
                    )
         
     | 
| 1150 | 
         
            +
             
     | 
| 1151 | 
         
            +
                    stopping_criteria = self._get_stopping_criteria(
         
     | 
| 1152 | 
         
            +
                        generation_config=generation_config, stopping_criteria=stopping_criteria
         
     | 
| 1153 | 
         
            +
                    )
         
     | 
| 1154 | 
         
            +
                    logits_warper = self._get_logits_warper(generation_config)
         
     | 
| 1155 | 
         
            +
             
     | 
| 1156 | 
         
            +
                    unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
         
     | 
| 1157 | 
         
            +
                    scores = None
         
     | 
| 1158 | 
         
            +
                    while True:
         
     | 
| 1159 | 
         
            +
                        model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
         
     | 
| 1160 | 
         
            +
                        # forward pass to get next token
         
     | 
| 1161 | 
         
            +
                        outputs = self(
         
     | 
| 1162 | 
         
            +
                            **model_inputs,
         
     | 
| 1163 | 
         
            +
                            return_dict=True,
         
     | 
| 1164 | 
         
            +
                            output_attentions=False,
         
     | 
| 1165 | 
         
            +
                            output_hidden_states=False,
         
     | 
| 1166 | 
         
            +
                        )
         
     | 
| 1167 | 
         
            +
             
     | 
| 1168 | 
         
            +
                        next_token_logits = outputs.logits[:, -1, :]
         
     | 
| 1169 | 
         
            +
             
     | 
| 1170 | 
         
            +
                        # pre-process distribution
         
     | 
| 1171 | 
         
            +
                        next_token_scores = logits_processor(input_ids, next_token_logits)
         
     | 
| 1172 | 
         
            +
                        next_token_scores = logits_warper(input_ids, next_token_scores)
         
     | 
| 1173 | 
         
            +
             
     | 
| 1174 | 
         
            +
                        # sample
         
     | 
| 1175 | 
         
            +
                        probs = nn.functional.softmax(next_token_scores, dim=-1)
         
     | 
| 1176 | 
         
            +
                        if generation_config.do_sample:
         
     | 
| 1177 | 
         
            +
                            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
         
     | 
| 1178 | 
         
            +
                        else:
         
     | 
| 1179 | 
         
            +
                            next_tokens = torch.argmax(probs, dim=-1)
         
     | 
| 1180 | 
         
            +
                        # update generated ids, model inputs, and length for next step
         
     | 
| 1181 | 
         
            +
                        input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
         
     | 
| 1182 | 
         
            +
                        model_kwargs = self._update_model_kwargs_for_generation(
         
     | 
| 1183 | 
         
            +
                            outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
         
     | 
| 1184 | 
         
            +
                        )
         
     | 
| 1185 | 
         
            +
                        unfinished_sequences = unfinished_sequences.mul(
         
     | 
| 1186 | 
         
            +
                            next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
         
     | 
| 1187 | 
         
            +
                        )
         
     | 
| 1188 | 
         
            +
                        if return_past_key_values:
         
     | 
| 1189 | 
         
            +
                            yield input_ids, outputs.past_key_values
         
     | 
| 1190 | 
         
            +
                        else:
         
     | 
| 1191 | 
         
            +
                            yield input_ids
         
     | 
| 1192 | 
         
            +
                        # stop when each sentence is finished, or if we exceed the maximum length
         
     | 
| 1193 | 
         
            +
                        if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
         
     | 
| 1194 | 
         
            +
                            break
         
     | 
| 1195 | 
         
            +
             
     | 
| 1196 | 
         
            +
                def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
         
     | 
| 1197 | 
         
            +
                    if bits == 0:
         
     | 
| 1198 | 
         
            +
                        return
         
     | 
| 1199 | 
         
            +
             
     | 
| 1200 | 
         
            +
                    from .quantization import quantize
         
     | 
| 1201 | 
         
            +
             
     | 
| 1202 | 
         
            +
                    if self.quantized:
         
     | 
| 1203 | 
         
            +
                        logger.info("Already quantized.")
         
     | 
| 1204 | 
         
            +
                        return self
         
     | 
| 1205 | 
         
            +
             
     | 
| 1206 | 
         
            +
                    self.quantized = True
         
     | 
| 1207 | 
         
            +
             
     | 
| 1208 | 
         
            +
                    self.config.quantization_bit = bits
         
     | 
| 1209 | 
         
            +
             
     | 
| 1210 | 
         
            +
                    self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
         
     | 
| 1211 | 
         
            +
                                                        **kwargs)
         
     | 
| 1212 | 
         
            +
                    return self
         
     | 
| 1213 | 
         
            +
             
     | 
| 1214 | 
         
            +
             
     | 
| 1215 | 
         
            +
            class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
         
     | 
| 1216 | 
         
            +
                def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
         
     | 
| 1217 | 
         
            +
                    super().__init__(config)
         
     | 
| 1218 | 
         
            +
             
     | 
| 1219 | 
         
            +
                    self.num_labels = config.num_labels
         
     | 
| 1220 | 
         
            +
                    self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
         
     | 
| 1221 | 
         
            +
             
     | 
| 1222 | 
         
            +
                    self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
         
     | 
| 1223 | 
         
            +
                    if config.classifier_dropout is not None:
         
     | 
| 1224 | 
         
            +
                        self.dropout = nn.Dropout(config.classifier_dropout)
         
     | 
| 1225 | 
         
            +
                    else:
         
     | 
| 1226 | 
         
            +
                        self.dropout = None
         
     | 
| 1227 | 
         
            +
                    self.config = config
         
     | 
| 1228 | 
         
            +
             
     | 
| 1229 | 
         
            +
                    if self.config.quantization_bit:
         
     | 
| 1230 | 
         
            +
                        self.quantize(self.config.quantization_bit, empty_init=True)
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                def forward(
         
     | 
| 1233 | 
         
            +
                        self,
         
     | 
| 1234 | 
         
            +
                        input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1235 | 
         
            +
                        position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 1236 | 
         
            +
                        attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1237 | 
         
            +
                        full_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1238 | 
         
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         
     | 
| 1239 | 
         
            +
                        inputs_embeds: Optional[torch.LongTensor] = None,
         
     | 
| 1240 | 
         
            +
                        labels: Optional[torch.LongTensor] = None,
         
     | 
| 1241 | 
         
            +
                        use_cache: Optional[bool] = None,
         
     | 
| 1242 | 
         
            +
                        output_hidden_states: Optional[bool] = None,
         
     | 
| 1243 | 
         
            +
                        return_dict: Optional[bool] = None,
         
     | 
| 1244 | 
         
            +
                ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
         
     | 
| 1245 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 1246 | 
         
            +
             
     | 
| 1247 | 
         
            +
                    transformer_outputs = self.transformer(
         
     | 
| 1248 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 1249 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 1250 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 1251 | 
         
            +
                        full_attention_mask=full_attention_mask,
         
     | 
| 1252 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 1253 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 1254 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 1255 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 1256 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 1257 | 
         
            +
                    )
         
     | 
| 1258 | 
         
            +
             
     | 
| 1259 | 
         
            +
                    hidden_states = transformer_outputs[0]
         
     | 
| 1260 | 
         
            +
                    pooled_hidden_states = hidden_states[-1]
         
     | 
| 1261 | 
         
            +
                    if self.dropout is not None:
         
     | 
| 1262 | 
         
            +
                        pooled_hidden_states = self.dropout(pooled_hidden_states)
         
     | 
| 1263 | 
         
            +
                    logits = self.classifier_head(pooled_hidden_states)
         
     | 
| 1264 | 
         
            +
             
     | 
| 1265 | 
         
            +
                    loss = None
         
     | 
| 1266 | 
         
            +
                    if labels is not None:
         
     | 
| 1267 | 
         
            +
                        if self.config.problem_type is None:
         
     | 
| 1268 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1269 | 
         
            +
                                self.config.problem_type = "regression"
         
     | 
| 1270 | 
         
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         
     | 
| 1271 | 
         
            +
                                self.config.problem_type = "single_label_classification"
         
     | 
| 1272 | 
         
            +
                            else:
         
     | 
| 1273 | 
         
            +
                                self.config.problem_type = "multi_label_classification"
         
     | 
| 1274 | 
         
            +
             
     | 
| 1275 | 
         
            +
                        if self.config.problem_type == "regression":
         
     | 
| 1276 | 
         
            +
                            loss_fct = MSELoss()
         
     | 
| 1277 | 
         
            +
                            if self.num_labels == 1:
         
     | 
| 1278 | 
         
            +
                                loss = loss_fct(logits.squeeze().float(), labels.squeeze())
         
     | 
| 1279 | 
         
            +
                            else:
         
     | 
| 1280 | 
         
            +
                                loss = loss_fct(logits.float(), labels)
         
     | 
| 1281 | 
         
            +
                        elif self.config.problem_type == "single_label_classification":
         
     | 
| 1282 | 
         
            +
                            loss_fct = CrossEntropyLoss()
         
     | 
| 1283 | 
         
            +
                            loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
         
     | 
| 1284 | 
         
            +
                        elif self.config.problem_type == "multi_label_classification":
         
     | 
| 1285 | 
         
            +
                            loss_fct = BCEWithLogitsLoss()
         
     | 
| 1286 | 
         
            +
                            loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
         
     | 
| 1287 | 
         
            +
             
     | 
| 1288 | 
         
            +
                    if not return_dict:
         
     | 
| 1289 | 
         
            +
                        output = (logits,) + transformer_outputs[1:]
         
     | 
| 1290 | 
         
            +
                        return ((loss,) + output) if loss is not None else output
         
     | 
| 1291 | 
         
            +
             
     | 
| 1292 | 
         
            +
                    return SequenceClassifierOutputWithPast(
         
     | 
| 1293 | 
         
            +
                        loss=loss,
         
     | 
| 1294 | 
         
            +
                        logits=logits,
         
     | 
| 1295 | 
         
            +
                        past_key_values=transformer_outputs.past_key_values,
         
     | 
| 1296 | 
         
            +
                        hidden_states=transformer_outputs.hidden_states,
         
     | 
| 1297 | 
         
            +
                        attentions=transformer_outputs.attentions,
         
     | 
| 1298 | 
         
            +
                    )
         
     | 
    	
        kolors/models/tokenization_chatglm.py
    ADDED
    
    | 
         @@ -0,0 +1,300 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import json
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import re
         
     | 
| 4 | 
         
            +
            from typing import List, Optional, Union, Dict
         
     | 
| 5 | 
         
            +
            from sentencepiece import SentencePieceProcessor
         
     | 
| 6 | 
         
            +
            from transformers import PreTrainedTokenizer
         
     | 
| 7 | 
         
            +
            from transformers.utils import logging, PaddingStrategy
         
     | 
| 8 | 
         
            +
            from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class SPTokenizer:
         
     | 
| 12 | 
         
            +
                def __init__(self, model_path: str):
         
     | 
| 13 | 
         
            +
                    # reload tokenizer
         
     | 
| 14 | 
         
            +
                    assert os.path.isfile(model_path), model_path
         
     | 
| 15 | 
         
            +
                    self.sp_model = SentencePieceProcessor(model_file=model_path)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                    # BOS / EOS token IDs
         
     | 
| 18 | 
         
            +
                    self.n_words: int = self.sp_model.vocab_size()
         
     | 
| 19 | 
         
            +
                    self.bos_id: int = self.sp_model.bos_id()
         
     | 
| 20 | 
         
            +
                    self.eos_id: int = self.sp_model.eos_id()
         
     | 
| 21 | 
         
            +
                    self.pad_id: int = self.sp_model.unk_id()
         
     | 
| 22 | 
         
            +
                    assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
         
     | 
| 25 | 
         
            +
                    special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
         
     | 
| 26 | 
         
            +
                    self.special_tokens = {}
         
     | 
| 27 | 
         
            +
                    self.index_special_tokens = {}
         
     | 
| 28 | 
         
            +
                    for token in special_tokens:
         
     | 
| 29 | 
         
            +
                        self.special_tokens[token] = self.n_words
         
     | 
| 30 | 
         
            +
                        self.index_special_tokens[self.n_words] = token
         
     | 
| 31 | 
         
            +
                        self.n_words += 1
         
     | 
| 32 | 
         
            +
                    self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def tokenize(self, s: str, encode_special_tokens=False):
         
     | 
| 35 | 
         
            +
                    if encode_special_tokens:
         
     | 
| 36 | 
         
            +
                        last_index = 0
         
     | 
| 37 | 
         
            +
                        t = []
         
     | 
| 38 | 
         
            +
                        for match in re.finditer(self.role_special_token_expression, s):
         
     | 
| 39 | 
         
            +
                            if last_index < match.start():
         
     | 
| 40 | 
         
            +
                                t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
         
     | 
| 41 | 
         
            +
                            t.append(s[match.start():match.end()])
         
     | 
| 42 | 
         
            +
                            last_index = match.end()
         
     | 
| 43 | 
         
            +
                        if last_index < len(s):
         
     | 
| 44 | 
         
            +
                            t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
         
     | 
| 45 | 
         
            +
                        return t
         
     | 
| 46 | 
         
            +
                    else:
         
     | 
| 47 | 
         
            +
                        return self.sp_model.EncodeAsPieces(s)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
         
     | 
| 50 | 
         
            +
                    assert type(s) is str
         
     | 
| 51 | 
         
            +
                    t = self.sp_model.encode(s)
         
     | 
| 52 | 
         
            +
                    if bos:
         
     | 
| 53 | 
         
            +
                        t = [self.bos_id] + t
         
     | 
| 54 | 
         
            +
                    if eos:
         
     | 
| 55 | 
         
            +
                        t = t + [self.eos_id]
         
     | 
| 56 | 
         
            +
                    return t
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                def decode(self, t: List[int]) -> str:
         
     | 
| 59 | 
         
            +
                    text, buffer = "", []
         
     | 
| 60 | 
         
            +
                    for token in t:
         
     | 
| 61 | 
         
            +
                        if token in self.index_special_tokens:
         
     | 
| 62 | 
         
            +
                            if buffer:
         
     | 
| 63 | 
         
            +
                                text += self.sp_model.decode(buffer)
         
     | 
| 64 | 
         
            +
                                buffer = []
         
     | 
| 65 | 
         
            +
                            text += self.index_special_tokens[token]
         
     | 
| 66 | 
         
            +
                        else:
         
     | 
| 67 | 
         
            +
                            buffer.append(token)
         
     | 
| 68 | 
         
            +
                    if buffer:
         
     | 
| 69 | 
         
            +
                        text += self.sp_model.decode(buffer)
         
     | 
| 70 | 
         
            +
                    return text
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                def decode_tokens(self, tokens: List[str]) -> str:
         
     | 
| 73 | 
         
            +
                    text = self.sp_model.DecodePieces(tokens)
         
     | 
| 74 | 
         
            +
                    return text
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def convert_token_to_id(self, token):
         
     | 
| 77 | 
         
            +
                    """ Converts a token (str) in an id using the vocab. """
         
     | 
| 78 | 
         
            +
                    if token in self.special_tokens:
         
     | 
| 79 | 
         
            +
                        return self.special_tokens[token]
         
     | 
| 80 | 
         
            +
                    return self.sp_model.PieceToId(token)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                def convert_id_to_token(self, index):
         
     | 
| 83 | 
         
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         
     | 
| 84 | 
         
            +
                    if index in self.index_special_tokens:
         
     | 
| 85 | 
         
            +
                        return self.index_special_tokens[index]
         
     | 
| 86 | 
         
            +
                    if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
         
     | 
| 87 | 
         
            +
                        return ""
         
     | 
| 88 | 
         
            +
                    return self.sp_model.IdToPiece(index)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            class ChatGLMTokenizer(PreTrainedTokenizer):
         
     | 
| 92 | 
         
            +
                vocab_files_names = {"vocab_file": "tokenizer.model"}
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                model_input_names = ["input_ids", "attention_mask", "position_ids"]
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
         
     | 
| 97 | 
         
            +
                             **kwargs):
         
     | 
| 98 | 
         
            +
                    self.name = "GLMTokenizer"
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    self.vocab_file = vocab_file
         
     | 
| 101 | 
         
            +
                    self.tokenizer = SPTokenizer(vocab_file)
         
     | 
| 102 | 
         
            +
                    self.special_tokens = {
         
     | 
| 103 | 
         
            +
                        "<bos>": self.tokenizer.bos_id,
         
     | 
| 104 | 
         
            +
                        "<eos>": self.tokenizer.eos_id,
         
     | 
| 105 | 
         
            +
                        "<pad>": self.tokenizer.pad_id
         
     | 
| 106 | 
         
            +
                    }
         
     | 
| 107 | 
         
            +
                    self.encode_special_tokens = encode_special_tokens
         
     | 
| 108 | 
         
            +
                    super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         
     | 
| 109 | 
         
            +
                                     encode_special_tokens=encode_special_tokens,
         
     | 
| 110 | 
         
            +
                                     **kwargs)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def get_command(self, token):
         
     | 
| 113 | 
         
            +
                    if token in self.special_tokens:
         
     | 
| 114 | 
         
            +
                        return self.special_tokens[token]
         
     | 
| 115 | 
         
            +
                    assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
         
     | 
| 116 | 
         
            +
                    return self.tokenizer.special_tokens[token]
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                @property
         
     | 
| 119 | 
         
            +
                def unk_token(self) -> str:
         
     | 
| 120 | 
         
            +
                    return "<unk>"
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                @property
         
     | 
| 123 | 
         
            +
                def pad_token(self) -> str:
         
     | 
| 124 | 
         
            +
                    return "<unk>"
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                @property
         
     | 
| 127 | 
         
            +
                def pad_token_id(self):
         
     | 
| 128 | 
         
            +
                    return self.get_command("<pad>")
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                @property
         
     | 
| 131 | 
         
            +
                def eos_token(self) -> str:
         
     | 
| 132 | 
         
            +
                    return "</s>"
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                @property
         
     | 
| 135 | 
         
            +
                def eos_token_id(self):
         
     | 
| 136 | 
         
            +
                    return self.get_command("<eos>")
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                @property
         
     | 
| 139 | 
         
            +
                def vocab_size(self):
         
     | 
| 140 | 
         
            +
                    return self.tokenizer.n_words
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def get_vocab(self):
         
     | 
| 143 | 
         
            +
                    """ Returns vocab as a dict """
         
     | 
| 144 | 
         
            +
                    vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
         
     | 
| 145 | 
         
            +
                    vocab.update(self.added_tokens_encoder)
         
     | 
| 146 | 
         
            +
                    return vocab
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                def _tokenize(self, text, **kwargs):
         
     | 
| 149 | 
         
            +
                    return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def _convert_token_to_id(self, token):
         
     | 
| 152 | 
         
            +
                    """ Converts a token (str) in an id using the vocab. """
         
     | 
| 153 | 
         
            +
                    return self.tokenizer.convert_token_to_id(token)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                def _convert_id_to_token(self, index):
         
     | 
| 156 | 
         
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         
     | 
| 157 | 
         
            +
                    return self.tokenizer.convert_id_to_token(index)
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                def convert_tokens_to_string(self, tokens: List[str]) -> str:
         
     | 
| 160 | 
         
            +
                    return self.tokenizer.decode_tokens(tokens)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                def save_vocabulary(self, save_directory, filename_prefix=None):
         
     | 
| 163 | 
         
            +
                    """
         
     | 
| 164 | 
         
            +
                    Save the vocabulary and special tokens file to a directory.
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    Args:
         
     | 
| 167 | 
         
            +
                        save_directory (`str`):
         
     | 
| 168 | 
         
            +
                            The directory in which to save the vocabulary.
         
     | 
| 169 | 
         
            +
                        filename_prefix (`str`, *optional*):
         
     | 
| 170 | 
         
            +
                            An optional prefix to add to the named of the saved files.
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    Returns:
         
     | 
| 173 | 
         
            +
                        `Tuple(str)`: Paths to the files saved.
         
     | 
| 174 | 
         
            +
                    """
         
     | 
| 175 | 
         
            +
                    if os.path.isdir(save_directory):
         
     | 
| 176 | 
         
            +
                        vocab_file = os.path.join(
         
     | 
| 177 | 
         
            +
                            save_directory, self.vocab_files_names["vocab_file"]
         
     | 
| 178 | 
         
            +
                        )
         
     | 
| 179 | 
         
            +
                    else:
         
     | 
| 180 | 
         
            +
                        vocab_file = save_directory
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    with open(self.vocab_file, 'rb') as fin:
         
     | 
| 183 | 
         
            +
                        proto_str = fin.read()
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    with open(vocab_file, "wb") as writer:
         
     | 
| 186 | 
         
            +
                        writer.write(proto_str)
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                    return (vocab_file,)
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                def get_prefix_tokens(self):
         
     | 
| 191 | 
         
            +
                    prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
         
     | 
| 192 | 
         
            +
                    return prefix_tokens
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                def build_single_message(self, role, metadata, message):
         
     | 
| 195 | 
         
            +
                    assert role in ["system", "user", "assistant", "observation"], role
         
     | 
| 196 | 
         
            +
                    role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
         
     | 
| 197 | 
         
            +
                    message_tokens = self.tokenizer.encode(message)
         
     | 
| 198 | 
         
            +
                    tokens = role_tokens + message_tokens
         
     | 
| 199 | 
         
            +
                    return tokens
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def build_chat_input(self, query, history=None, role="user"):
         
     | 
| 202 | 
         
            +
                    if history is None:
         
     | 
| 203 | 
         
            +
                        history = []
         
     | 
| 204 | 
         
            +
                    input_ids = []
         
     | 
| 205 | 
         
            +
                    for item in history:
         
     | 
| 206 | 
         
            +
                        content = item["content"]
         
     | 
| 207 | 
         
            +
                        if item["role"] == "system" and "tools" in item:
         
     | 
| 208 | 
         
            +
                            content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
         
     | 
| 209 | 
         
            +
                        input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
         
     | 
| 210 | 
         
            +
                    input_ids.extend(self.build_single_message(role, "", query))
         
     | 
| 211 | 
         
            +
                    input_ids.extend([self.get_command("<|assistant|>")])
         
     | 
| 212 | 
         
            +
                    return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                def build_inputs_with_special_tokens(
         
     | 
| 215 | 
         
            +
                        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         
     | 
| 216 | 
         
            +
                ) -> List[int]:
         
     | 
| 217 | 
         
            +
                    """
         
     | 
| 218 | 
         
            +
                    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
         
     | 
| 219 | 
         
            +
                    adding special tokens. A BERT sequence has the following format:
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    - single sequence: `[CLS] X [SEP]`
         
     | 
| 222 | 
         
            +
                    - pair of sequences: `[CLS] A [SEP] B [SEP]`
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                    Args:
         
     | 
| 225 | 
         
            +
                        token_ids_0 (`List[int]`):
         
     | 
| 226 | 
         
            +
                            List of IDs to which the special tokens will be added.
         
     | 
| 227 | 
         
            +
                        token_ids_1 (`List[int]`, *optional*):
         
     | 
| 228 | 
         
            +
                            Optional second list of IDs for sequence pairs.
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    Returns:
         
     | 
| 231 | 
         
            +
                        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
         
     | 
| 232 | 
         
            +
                    """
         
     | 
| 233 | 
         
            +
                    prefix_tokens = self.get_prefix_tokens()
         
     | 
| 234 | 
         
            +
                    token_ids_0 = prefix_tokens + token_ids_0
         
     | 
| 235 | 
         
            +
                    if token_ids_1 is not None:
         
     | 
| 236 | 
         
            +
                        token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
         
     | 
| 237 | 
         
            +
                    return token_ids_0
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                def _pad(
         
     | 
| 240 | 
         
            +
                        self,
         
     | 
| 241 | 
         
            +
                        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
         
     | 
| 242 | 
         
            +
                        max_length: Optional[int] = None,
         
     | 
| 243 | 
         
            +
                        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
         
     | 
| 244 | 
         
            +
                        pad_to_multiple_of: Optional[int] = None,
         
     | 
| 245 | 
         
            +
                        return_attention_mask: Optional[bool] = None,
         
     | 
| 246 | 
         
            +
                ) -> dict:
         
     | 
| 247 | 
         
            +
                    """
         
     | 
| 248 | 
         
            +
                    Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    Args:
         
     | 
| 251 | 
         
            +
                        encoded_inputs:
         
     | 
| 252 | 
         
            +
                            Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
         
     | 
| 253 | 
         
            +
                        max_length: maximum length of the returned list and optionally padding length (see below).
         
     | 
| 254 | 
         
            +
                            Will truncate by taking into account the special tokens.
         
     | 
| 255 | 
         
            +
                        padding_strategy: PaddingStrategy to use for padding.
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                            - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
         
     | 
| 258 | 
         
            +
                            - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
         
     | 
| 259 | 
         
            +
                            - PaddingStrategy.DO_NOT_PAD: Do not pad
         
     | 
| 260 | 
         
            +
                            The tokenizer padding sides are defined in self.padding_side:
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                                - 'left': pads on the left of the sequences
         
     | 
| 263 | 
         
            +
                                - 'right': pads on the right of the sequences
         
     | 
| 264 | 
         
            +
                        pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
         
     | 
| 265 | 
         
            +
                            This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
         
     | 
| 266 | 
         
            +
                            `>= 7.5` (Volta).
         
     | 
| 267 | 
         
            +
                        return_attention_mask:
         
     | 
| 268 | 
         
            +
                            (optional) Set to False to avoid returning attention mask (default: set to model specifics)
         
     | 
| 269 | 
         
            +
                    """
         
     | 
| 270 | 
         
            +
                    # Load from model defaults
         
     | 
| 271 | 
         
            +
                    assert self.padding_side == "left"
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                    required_input = encoded_inputs[self.model_input_names[0]]
         
     | 
| 274 | 
         
            +
                    seq_length = len(required_input)
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    if padding_strategy == PaddingStrategy.LONGEST:
         
     | 
| 277 | 
         
            +
                        max_length = len(required_input)
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
         
     | 
| 280 | 
         
            +
                        max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    # Initialize attention mask if not present.
         
     | 
| 285 | 
         
            +
                    if "attention_mask" not in encoded_inputs:
         
     | 
| 286 | 
         
            +
                        encoded_inputs["attention_mask"] = [1] * seq_length
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                    if "position_ids" not in encoded_inputs:
         
     | 
| 289 | 
         
            +
                        encoded_inputs["position_ids"] = list(range(seq_length))
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    if needs_to_be_padded:
         
     | 
| 292 | 
         
            +
                        difference = max_length - len(required_input)
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                        if "attention_mask" in encoded_inputs:
         
     | 
| 295 | 
         
            +
                            encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
         
     | 
| 296 | 
         
            +
                        if "position_ids" in encoded_inputs:
         
     | 
| 297 | 
         
            +
                            encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
         
     | 
| 298 | 
         
            +
                        encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                    return encoded_inputs
         
     | 
    	
        kolors/models/unet_2d_condition.py
    ADDED
    
    | 
         @@ -0,0 +1,1318 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 15 | 
         
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import torch
         
     | 
| 18 | 
         
            +
            import torch.nn as nn
         
     | 
| 19 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 22 | 
         
            +
            from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
         
     | 
| 23 | 
         
            +
            from diffusers.loaders.single_file_model import FromOriginalModelMixin
         
     | 
| 24 | 
         
            +
            from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
         
     | 
| 25 | 
         
            +
            from diffusers.models.activations import get_activation
         
     | 
| 26 | 
         
            +
            from diffusers.models.attention_processor import (
         
     | 
| 27 | 
         
            +
                ADDED_KV_ATTENTION_PROCESSORS,
         
     | 
| 28 | 
         
            +
                CROSS_ATTENTION_PROCESSORS,
         
     | 
| 29 | 
         
            +
                Attention,
         
     | 
| 30 | 
         
            +
                AttentionProcessor,
         
     | 
| 31 | 
         
            +
                AttnAddedKVProcessor,
         
     | 
| 32 | 
         
            +
                AttnProcessor,
         
     | 
| 33 | 
         
            +
            )
         
     | 
| 34 | 
         
            +
            from diffusers.models.embeddings import (
         
     | 
| 35 | 
         
            +
                GaussianFourierProjection,
         
     | 
| 36 | 
         
            +
                GLIGENTextBoundingboxProjection,
         
     | 
| 37 | 
         
            +
                ImageHintTimeEmbedding,
         
     | 
| 38 | 
         
            +
                ImageProjection,
         
     | 
| 39 | 
         
            +
                ImageTimeEmbedding,
         
     | 
| 40 | 
         
            +
                TextImageProjection,
         
     | 
| 41 | 
         
            +
                TextImageTimeEmbedding,
         
     | 
| 42 | 
         
            +
                TextTimeEmbedding,
         
     | 
| 43 | 
         
            +
                TimestepEmbedding,
         
     | 
| 44 | 
         
            +
                Timesteps,
         
     | 
| 45 | 
         
            +
            )
         
     | 
| 46 | 
         
            +
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            try:
         
     | 
| 49 | 
         
            +
                from diffusers.models.unet_2d_blocks import (
         
     | 
| 50 | 
         
            +
                    get_down_block,
         
     | 
| 51 | 
         
            +
                    get_mid_block,
         
     | 
| 52 | 
         
            +
                    get_up_block,
         
     | 
| 53 | 
         
            +
                )
         
     | 
| 54 | 
         
            +
            except:
         
     | 
| 55 | 
         
            +
                from diffusers.models.unets.unet_2d_blocks import (
         
     | 
| 56 | 
         
            +
                    get_down_block,
         
     | 
| 57 | 
         
            +
                    get_mid_block,
         
     | 
| 58 | 
         
            +
                    get_up_block,
         
     | 
| 59 | 
         
            +
                )
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            @dataclass
         
     | 
| 67 | 
         
            +
            class UNet2DConditionOutput(BaseOutput):
         
     | 
| 68 | 
         
            +
                """
         
     | 
| 69 | 
         
            +
                The output of [`UNet2DConditionModel`].
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                Args:
         
     | 
| 72 | 
         
            +
                    sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
         
     | 
| 73 | 
         
            +
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         
     | 
| 74 | 
         
            +
                """
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                sample: torch.Tensor = None
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            class UNet2DConditionModel(
         
     | 
| 80 | 
         
            +
                ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
         
     | 
| 81 | 
         
            +
            ):
         
     | 
| 82 | 
         
            +
                r"""
         
     | 
| 83 | 
         
            +
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         
     | 
| 84 | 
         
            +
                shaped output.
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         
     | 
| 87 | 
         
            +
                for all models (such as downloading or saving).
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                Parameters:
         
     | 
| 90 | 
         
            +
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         
     | 
| 91 | 
         
            +
                        Height and width of input/output sample.
         
     | 
| 92 | 
         
            +
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         
     | 
| 93 | 
         
            +
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         
     | 
| 94 | 
         
            +
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         
     | 
| 95 | 
         
            +
                    flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
         
     | 
| 96 | 
         
            +
                        Whether to flip the sin to cos in the time embedding.
         
     | 
| 97 | 
         
            +
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         
     | 
| 98 | 
         
            +
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         
     | 
| 99 | 
         
            +
                        The tuple of downsample blocks to use.
         
     | 
| 100 | 
         
            +
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         
     | 
| 101 | 
         
            +
                        Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
         
     | 
| 102 | 
         
            +
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         
     | 
| 103 | 
         
            +
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         
     | 
| 104 | 
         
            +
                        The tuple of upsample blocks to use.
         
     | 
| 105 | 
         
            +
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         
     | 
| 106 | 
         
            +
                        Whether to include self-attention in the basic transformer blocks, see
         
     | 
| 107 | 
         
            +
                        [`~models.attention.BasicTransformerBlock`].
         
     | 
| 108 | 
         
            +
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         
     | 
| 109 | 
         
            +
                        The tuple of output channels for each block.
         
     | 
| 110 | 
         
            +
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         
     | 
| 111 | 
         
            +
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         
     | 
| 112 | 
         
            +
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         
     | 
| 113 | 
         
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         
     | 
| 114 | 
         
            +
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         
     | 
| 115 | 
         
            +
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         
     | 
| 116 | 
         
            +
                        If `None`, normalization and activation layers is skipped in post-processing.
         
     | 
| 117 | 
         
            +
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         
     | 
| 118 | 
         
            +
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         
     | 
| 119 | 
         
            +
                        The dimension of the cross attention features.
         
     | 
| 120 | 
         
            +
                    transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
         
     | 
| 121 | 
         
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         
     | 
| 122 | 
         
            +
                        [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 123 | 
         
            +
                        [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 124 | 
         
            +
                    reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
         
     | 
| 125 | 
         
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
         
     | 
| 126 | 
         
            +
                        blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
         
     | 
| 127 | 
         
            +
                        [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
         
     | 
| 128 | 
         
            +
                        [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         
     | 
| 129 | 
         
            +
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         
     | 
| 130 | 
         
            +
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         
     | 
| 131 | 
         
            +
                        dimension to `cross_attention_dim`.
         
     | 
| 132 | 
         
            +
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         
     | 
| 133 | 
         
            +
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         
     | 
| 134 | 
         
            +
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         
     | 
| 135 | 
         
            +
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         
     | 
| 136 | 
         
            +
                    num_attention_heads (`int`, *optional*):
         
     | 
| 137 | 
         
            +
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         
     | 
| 138 | 
         
            +
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         
     | 
| 139 | 
         
            +
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         
     | 
| 140 | 
         
            +
                    class_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 141 | 
         
            +
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         
     | 
| 142 | 
         
            +
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         
     | 
| 143 | 
         
            +
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         
     | 
| 144 | 
         
            +
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         
     | 
| 145 | 
         
            +
                        "text". "text" will use the `TextTimeEmbedding` layer.
         
     | 
| 146 | 
         
            +
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         
     | 
| 147 | 
         
            +
                        Dimension for the timestep embeddings.
         
     | 
| 148 | 
         
            +
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         
     | 
| 149 | 
         
            +
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         
     | 
| 150 | 
         
            +
                        class conditioning with `class_embed_type` equal to `None`.
         
     | 
| 151 | 
         
            +
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         
     | 
| 152 | 
         
            +
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         
     | 
| 153 | 
         
            +
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 154 | 
         
            +
                        An optional override for the dimension of the projected time embedding.
         
     | 
| 155 | 
         
            +
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         
     | 
| 156 | 
         
            +
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         
     | 
| 157 | 
         
            +
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         
     | 
| 158 | 
         
            +
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         
     | 
| 159 | 
         
            +
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         
     | 
| 160 | 
         
            +
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         
     | 
| 161 | 
         
            +
                        The dimension of `cond_proj` layer in the timestep embedding.
         
     | 
| 162 | 
         
            +
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         
     | 
| 163 | 
         
            +
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         
     | 
| 164 | 
         
            +
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         
     | 
| 165 | 
         
            +
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         
     | 
| 166 | 
         
            +
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         
     | 
| 167 | 
         
            +
                        embeddings with the class embeddings.
         
     | 
| 168 | 
         
            +
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         
     | 
| 169 | 
         
            +
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         
     | 
| 170 | 
         
            +
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         
     | 
| 171 | 
         
            +
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         
     | 
| 172 | 
         
            +
                        otherwise.
         
     | 
| 173 | 
         
            +
                """
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                _supports_gradient_checkpointing = True
         
     | 
| 176 | 
         
            +
                _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                @register_to_config
         
     | 
| 179 | 
         
            +
                def __init__(
         
     | 
| 180 | 
         
            +
                    self,
         
     | 
| 181 | 
         
            +
                    sample_size: Optional[int] = None,
         
     | 
| 182 | 
         
            +
                    in_channels: int = 4,
         
     | 
| 183 | 
         
            +
                    out_channels: int = 4,
         
     | 
| 184 | 
         
            +
                    center_input_sample: bool = False,
         
     | 
| 185 | 
         
            +
                    flip_sin_to_cos: bool = True,
         
     | 
| 186 | 
         
            +
                    freq_shift: int = 0,
         
     | 
| 187 | 
         
            +
                    down_block_types: Tuple[str] = (
         
     | 
| 188 | 
         
            +
                        "CrossAttnDownBlock2D",
         
     | 
| 189 | 
         
            +
                        "CrossAttnDownBlock2D",
         
     | 
| 190 | 
         
            +
                        "CrossAttnDownBlock2D",
         
     | 
| 191 | 
         
            +
                        "DownBlock2D",
         
     | 
| 192 | 
         
            +
                    ),
         
     | 
| 193 | 
         
            +
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         
     | 
| 194 | 
         
            +
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
         
     | 
| 195 | 
         
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         
     | 
| 196 | 
         
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         
     | 
| 197 | 
         
            +
                    layers_per_block: Union[int, Tuple[int]] = 2,
         
     | 
| 198 | 
         
            +
                    downsample_padding: int = 1,
         
     | 
| 199 | 
         
            +
                    mid_block_scale_factor: float = 1,
         
     | 
| 200 | 
         
            +
                    dropout: float = 0.0,
         
     | 
| 201 | 
         
            +
                    act_fn: str = "silu",
         
     | 
| 202 | 
         
            +
                    norm_num_groups: Optional[int] = 32,
         
     | 
| 203 | 
         
            +
                    norm_eps: float = 1e-5,
         
     | 
| 204 | 
         
            +
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         
     | 
| 205 | 
         
            +
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
         
     | 
| 206 | 
         
            +
                    reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
         
     | 
| 207 | 
         
            +
                    encoder_hid_dim: Optional[int] = None,
         
     | 
| 208 | 
         
            +
                    encoder_hid_dim_type: Optional[str] = None,
         
     | 
| 209 | 
         
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         
     | 
| 210 | 
         
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         
     | 
| 211 | 
         
            +
                    dual_cross_attention: bool = False,
         
     | 
| 212 | 
         
            +
                    use_linear_projection: bool = False,
         
     | 
| 213 | 
         
            +
                    class_embed_type: Optional[str] = None,
         
     | 
| 214 | 
         
            +
                    addition_embed_type: Optional[str] = None,
         
     | 
| 215 | 
         
            +
                    addition_time_embed_dim: Optional[int] = None,
         
     | 
| 216 | 
         
            +
                    num_class_embeds: Optional[int] = None,
         
     | 
| 217 | 
         
            +
                    upcast_attention: bool = False,
         
     | 
| 218 | 
         
            +
                    resnet_time_scale_shift: str = "default",
         
     | 
| 219 | 
         
            +
                    resnet_skip_time_act: bool = False,
         
     | 
| 220 | 
         
            +
                    resnet_out_scale_factor: float = 1.0,
         
     | 
| 221 | 
         
            +
                    time_embedding_type: str = "positional",
         
     | 
| 222 | 
         
            +
                    time_embedding_dim: Optional[int] = None,
         
     | 
| 223 | 
         
            +
                    time_embedding_act_fn: Optional[str] = None,
         
     | 
| 224 | 
         
            +
                    timestep_post_act: Optional[str] = None,
         
     | 
| 225 | 
         
            +
                    time_cond_proj_dim: Optional[int] = None,
         
     | 
| 226 | 
         
            +
                    conv_in_kernel: int = 3,
         
     | 
| 227 | 
         
            +
                    conv_out_kernel: int = 3,
         
     | 
| 228 | 
         
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         
     | 
| 229 | 
         
            +
                    attention_type: str = "default",
         
     | 
| 230 | 
         
            +
                    class_embeddings_concat: bool = False,
         
     | 
| 231 | 
         
            +
                    mid_block_only_cross_attention: Optional[bool] = None,
         
     | 
| 232 | 
         
            +
                    cross_attention_norm: Optional[str] = None,
         
     | 
| 233 | 
         
            +
                    addition_embed_type_num_heads: int = 64,
         
     | 
| 234 | 
         
            +
                ):
         
     | 
| 235 | 
         
            +
                    super().__init__()
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    self.sample_size = sample_size
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    if num_attention_heads is not None:
         
     | 
| 240 | 
         
            +
                        raise ValueError(
         
     | 
| 241 | 
         
            +
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         
     | 
| 242 | 
         
            +
                        )
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    # If `num_attention_heads` is not defined (which is the case for most models)
         
     | 
| 245 | 
         
            +
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         
     | 
| 246 | 
         
            +
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         
     | 
| 247 | 
         
            +
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         
     | 
| 248 | 
         
            +
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         
     | 
| 249 | 
         
            +
                    # which is why we correct for the naming here.
         
     | 
| 250 | 
         
            +
                    num_attention_heads = num_attention_heads or attention_head_dim
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    # Check inputs
         
     | 
| 253 | 
         
            +
                    self._check_config(
         
     | 
| 254 | 
         
            +
                        down_block_types=down_block_types,
         
     | 
| 255 | 
         
            +
                        up_block_types=up_block_types,
         
     | 
| 256 | 
         
            +
                        only_cross_attention=only_cross_attention,
         
     | 
| 257 | 
         
            +
                        block_out_channels=block_out_channels,
         
     | 
| 258 | 
         
            +
                        layers_per_block=layers_per_block,
         
     | 
| 259 | 
         
            +
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 260 | 
         
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         
     | 
| 261 | 
         
            +
                        reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
         
     | 
| 262 | 
         
            +
                        attention_head_dim=attention_head_dim,
         
     | 
| 263 | 
         
            +
                        num_attention_heads=num_attention_heads,
         
     | 
| 264 | 
         
            +
                    )
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                    # input
         
     | 
| 267 | 
         
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         
     | 
| 268 | 
         
            +
                    self.conv_in = nn.Conv2d(
         
     | 
| 269 | 
         
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         
     | 
| 270 | 
         
            +
                    )
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                    # time
         
     | 
| 273 | 
         
            +
                    time_embed_dim, timestep_input_dim = self._set_time_proj(
         
     | 
| 274 | 
         
            +
                        time_embedding_type,
         
     | 
| 275 | 
         
            +
                        block_out_channels=block_out_channels,
         
     | 
| 276 | 
         
            +
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 277 | 
         
            +
                        freq_shift=freq_shift,
         
     | 
| 278 | 
         
            +
                        time_embedding_dim=time_embedding_dim,
         
     | 
| 279 | 
         
            +
                    )
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    self.time_embedding = TimestepEmbedding(
         
     | 
| 282 | 
         
            +
                        timestep_input_dim,
         
     | 
| 283 | 
         
            +
                        time_embed_dim,
         
     | 
| 284 | 
         
            +
                        act_fn=act_fn,
         
     | 
| 285 | 
         
            +
                        post_act_fn=timestep_post_act,
         
     | 
| 286 | 
         
            +
                        cond_proj_dim=time_cond_proj_dim,
         
     | 
| 287 | 
         
            +
                    )
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    self._set_encoder_hid_proj(
         
     | 
| 290 | 
         
            +
                        encoder_hid_dim_type,
         
     | 
| 291 | 
         
            +
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 292 | 
         
            +
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 293 | 
         
            +
                    )
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                    # class embedding
         
     | 
| 296 | 
         
            +
                    self._set_class_embedding(
         
     | 
| 297 | 
         
            +
                        class_embed_type,
         
     | 
| 298 | 
         
            +
                        act_fn=act_fn,
         
     | 
| 299 | 
         
            +
                        num_class_embeds=num_class_embeds,
         
     | 
| 300 | 
         
            +
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 301 | 
         
            +
                        time_embed_dim=time_embed_dim,
         
     | 
| 302 | 
         
            +
                        timestep_input_dim=timestep_input_dim,
         
     | 
| 303 | 
         
            +
                    )
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    self._set_add_embedding(
         
     | 
| 306 | 
         
            +
                        addition_embed_type,
         
     | 
| 307 | 
         
            +
                        addition_embed_type_num_heads=addition_embed_type_num_heads,
         
     | 
| 308 | 
         
            +
                        addition_time_embed_dim=addition_time_embed_dim,
         
     | 
| 309 | 
         
            +
                        cross_attention_dim=cross_attention_dim,
         
     | 
| 310 | 
         
            +
                        encoder_hid_dim=encoder_hid_dim,
         
     | 
| 311 | 
         
            +
                        flip_sin_to_cos=flip_sin_to_cos,
         
     | 
| 312 | 
         
            +
                        freq_shift=freq_shift,
         
     | 
| 313 | 
         
            +
                        projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
         
     | 
| 314 | 
         
            +
                        time_embed_dim=time_embed_dim,
         
     | 
| 315 | 
         
            +
                    )
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    if time_embedding_act_fn is None:
         
     | 
| 318 | 
         
            +
                        self.time_embed_act = None
         
     | 
| 319 | 
         
            +
                    else:
         
     | 
| 320 | 
         
            +
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    self.down_blocks = nn.ModuleList([])
         
     | 
| 323 | 
         
            +
                    self.up_blocks = nn.ModuleList([])
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    if isinstance(only_cross_attention, bool):
         
     | 
| 326 | 
         
            +
                        if mid_block_only_cross_attention is None:
         
     | 
| 327 | 
         
            +
                            mid_block_only_cross_attention = only_cross_attention
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    if mid_block_only_cross_attention is None:
         
     | 
| 332 | 
         
            +
                        mid_block_only_cross_attention = False
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                    if isinstance(num_attention_heads, int):
         
     | 
| 335 | 
         
            +
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    if isinstance(attention_head_dim, int):
         
     | 
| 338 | 
         
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                    if isinstance(cross_attention_dim, int):
         
     | 
| 341 | 
         
            +
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    if isinstance(layers_per_block, int):
         
     | 
| 344 | 
         
            +
                        layers_per_block = [layers_per_block] * len(down_block_types)
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    if isinstance(transformer_layers_per_block, int):
         
     | 
| 347 | 
         
            +
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    if class_embeddings_concat:
         
     | 
| 350 | 
         
            +
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         
     | 
| 351 | 
         
            +
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         
     | 
| 352 | 
         
            +
                        # regular time embeddings
         
     | 
| 353 | 
         
            +
                        blocks_time_embed_dim = time_embed_dim * 2
         
     | 
| 354 | 
         
            +
                    else:
         
     | 
| 355 | 
         
            +
                        blocks_time_embed_dim = time_embed_dim
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    # down
         
     | 
| 358 | 
         
            +
                    output_channel = block_out_channels[0]
         
     | 
| 359 | 
         
            +
                    for i, down_block_type in enumerate(down_block_types):
         
     | 
| 360 | 
         
            +
                        input_channel = output_channel
         
     | 
| 361 | 
         
            +
                        output_channel = block_out_channels[i]
         
     | 
| 362 | 
         
            +
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                        down_block = get_down_block(
         
     | 
| 365 | 
         
            +
                            down_block_type,
         
     | 
| 366 | 
         
            +
                            num_layers=layers_per_block[i],
         
     | 
| 367 | 
         
            +
                            transformer_layers_per_block=transformer_layers_per_block[i],
         
     | 
| 368 | 
         
            +
                            in_channels=input_channel,
         
     | 
| 369 | 
         
            +
                            out_channels=output_channel,
         
     | 
| 370 | 
         
            +
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 371 | 
         
            +
                            add_downsample=not is_final_block,
         
     | 
| 372 | 
         
            +
                            resnet_eps=norm_eps,
         
     | 
| 373 | 
         
            +
                            resnet_act_fn=act_fn,
         
     | 
| 374 | 
         
            +
                            resnet_groups=norm_num_groups,
         
     | 
| 375 | 
         
            +
                            cross_attention_dim=cross_attention_dim[i],
         
     | 
| 376 | 
         
            +
                            num_attention_heads=num_attention_heads[i],
         
     | 
| 377 | 
         
            +
                            downsample_padding=downsample_padding,
         
     | 
| 378 | 
         
            +
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 379 | 
         
            +
                            use_linear_projection=use_linear_projection,
         
     | 
| 380 | 
         
            +
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 381 | 
         
            +
                            upcast_attention=upcast_attention,
         
     | 
| 382 | 
         
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 383 | 
         
            +
                            attention_type=attention_type,
         
     | 
| 384 | 
         
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 385 | 
         
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 386 | 
         
            +
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 387 | 
         
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 388 | 
         
            +
                            dropout=dropout,
         
     | 
| 389 | 
         
            +
                        )
         
     | 
| 390 | 
         
            +
                        self.down_blocks.append(down_block)
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                    # mid
         
     | 
| 393 | 
         
            +
                    self.mid_block = get_mid_block(
         
     | 
| 394 | 
         
            +
                        mid_block_type,
         
     | 
| 395 | 
         
            +
                        temb_channels=blocks_time_embed_dim,
         
     | 
| 396 | 
         
            +
                        in_channels=block_out_channels[-1],
         
     | 
| 397 | 
         
            +
                        resnet_eps=norm_eps,
         
     | 
| 398 | 
         
            +
                        resnet_act_fn=act_fn,
         
     | 
| 399 | 
         
            +
                        resnet_groups=norm_num_groups,
         
     | 
| 400 | 
         
            +
                        output_scale_factor=mid_block_scale_factor,
         
     | 
| 401 | 
         
            +
                        transformer_layers_per_block=transformer_layers_per_block[-1],
         
     | 
| 402 | 
         
            +
                        num_attention_heads=num_attention_heads[-1],
         
     | 
| 403 | 
         
            +
                        cross_attention_dim=cross_attention_dim[-1],
         
     | 
| 404 | 
         
            +
                        dual_cross_attention=dual_cross_attention,
         
     | 
| 405 | 
         
            +
                        use_linear_projection=use_linear_projection,
         
     | 
| 406 | 
         
            +
                        mid_block_only_cross_attention=mid_block_only_cross_attention,
         
     | 
| 407 | 
         
            +
                        upcast_attention=upcast_attention,
         
     | 
| 408 | 
         
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 409 | 
         
            +
                        attention_type=attention_type,
         
     | 
| 410 | 
         
            +
                        resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 411 | 
         
            +
                        cross_attention_norm=cross_attention_norm,
         
     | 
| 412 | 
         
            +
                        attention_head_dim=attention_head_dim[-1],
         
     | 
| 413 | 
         
            +
                        dropout=dropout,
         
     | 
| 414 | 
         
            +
                    )
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    # count how many layers upsample the images
         
     | 
| 417 | 
         
            +
                    self.num_upsamplers = 0
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                    # up
         
     | 
| 420 | 
         
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         
     | 
| 421 | 
         
            +
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         
     | 
| 422 | 
         
            +
                    reversed_layers_per_block = list(reversed(layers_per_block))
         
     | 
| 423 | 
         
            +
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         
     | 
| 424 | 
         
            +
                    reversed_transformer_layers_per_block = (
         
     | 
| 425 | 
         
            +
                        list(reversed(transformer_layers_per_block))
         
     | 
| 426 | 
         
            +
                        if reverse_transformer_layers_per_block is None
         
     | 
| 427 | 
         
            +
                        else reverse_transformer_layers_per_block
         
     | 
| 428 | 
         
            +
                    )
         
     | 
| 429 | 
         
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    output_channel = reversed_block_out_channels[0]
         
     | 
| 432 | 
         
            +
                    for i, up_block_type in enumerate(up_block_types):
         
     | 
| 433 | 
         
            +
                        is_final_block = i == len(block_out_channels) - 1
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                        prev_output_channel = output_channel
         
     | 
| 436 | 
         
            +
                        output_channel = reversed_block_out_channels[i]
         
     | 
| 437 | 
         
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                        # add upsample block for all BUT final layer
         
     | 
| 440 | 
         
            +
                        if not is_final_block:
         
     | 
| 441 | 
         
            +
                            add_upsample = True
         
     | 
| 442 | 
         
            +
                            self.num_upsamplers += 1
         
     | 
| 443 | 
         
            +
                        else:
         
     | 
| 444 | 
         
            +
                            add_upsample = False
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                        up_block = get_up_block(
         
     | 
| 447 | 
         
            +
                            up_block_type,
         
     | 
| 448 | 
         
            +
                            num_layers=reversed_layers_per_block[i] + 1,
         
     | 
| 449 | 
         
            +
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         
     | 
| 450 | 
         
            +
                            in_channels=input_channel,
         
     | 
| 451 | 
         
            +
                            out_channels=output_channel,
         
     | 
| 452 | 
         
            +
                            prev_output_channel=prev_output_channel,
         
     | 
| 453 | 
         
            +
                            temb_channels=blocks_time_embed_dim,
         
     | 
| 454 | 
         
            +
                            add_upsample=add_upsample,
         
     | 
| 455 | 
         
            +
                            resnet_eps=norm_eps,
         
     | 
| 456 | 
         
            +
                            resnet_act_fn=act_fn,
         
     | 
| 457 | 
         
            +
                            resolution_idx=i,
         
     | 
| 458 | 
         
            +
                            resnet_groups=norm_num_groups,
         
     | 
| 459 | 
         
            +
                            cross_attention_dim=reversed_cross_attention_dim[i],
         
     | 
| 460 | 
         
            +
                            num_attention_heads=reversed_num_attention_heads[i],
         
     | 
| 461 | 
         
            +
                            dual_cross_attention=dual_cross_attention,
         
     | 
| 462 | 
         
            +
                            use_linear_projection=use_linear_projection,
         
     | 
| 463 | 
         
            +
                            only_cross_attention=only_cross_attention[i],
         
     | 
| 464 | 
         
            +
                            upcast_attention=upcast_attention,
         
     | 
| 465 | 
         
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         
     | 
| 466 | 
         
            +
                            attention_type=attention_type,
         
     | 
| 467 | 
         
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         
     | 
| 468 | 
         
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         
     | 
| 469 | 
         
            +
                            cross_attention_norm=cross_attention_norm,
         
     | 
| 470 | 
         
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         
     | 
| 471 | 
         
            +
                            dropout=dropout,
         
     | 
| 472 | 
         
            +
                        )
         
     | 
| 473 | 
         
            +
                        self.up_blocks.append(up_block)
         
     | 
| 474 | 
         
            +
                        prev_output_channel = output_channel
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                    # out
         
     | 
| 477 | 
         
            +
                    if norm_num_groups is not None:
         
     | 
| 478 | 
         
            +
                        self.conv_norm_out = nn.GroupNorm(
         
     | 
| 479 | 
         
            +
                            num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
         
     | 
| 480 | 
         
            +
                        )
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                        self.conv_act = get_activation(act_fn)
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                    else:
         
     | 
| 485 | 
         
            +
                        self.conv_norm_out = None
         
     | 
| 486 | 
         
            +
                        self.conv_act = None
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                    conv_out_padding = (conv_out_kernel - 1) // 2
         
     | 
| 489 | 
         
            +
                    self.conv_out = nn.Conv2d(
         
     | 
| 490 | 
         
            +
                        block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
         
     | 
| 491 | 
         
            +
                    )
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                def _check_config(
         
     | 
| 496 | 
         
            +
                    self,
         
     | 
| 497 | 
         
            +
                    down_block_types: Tuple[str],
         
     | 
| 498 | 
         
            +
                    up_block_types: Tuple[str],
         
     | 
| 499 | 
         
            +
                    only_cross_attention: Union[bool, Tuple[bool]],
         
     | 
| 500 | 
         
            +
                    block_out_channels: Tuple[int],
         
     | 
| 501 | 
         
            +
                    layers_per_block: Union[int, Tuple[int]],
         
     | 
| 502 | 
         
            +
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 503 | 
         
            +
                    transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
         
     | 
| 504 | 
         
            +
                    reverse_transformer_layers_per_block: bool,
         
     | 
| 505 | 
         
            +
                    attention_head_dim: int,
         
     | 
| 506 | 
         
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]],
         
     | 
| 507 | 
         
            +
                ):
         
     | 
| 508 | 
         
            +
                    if len(down_block_types) != len(up_block_types):
         
     | 
| 509 | 
         
            +
                        raise ValueError(
         
     | 
| 510 | 
         
            +
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         
     | 
| 511 | 
         
            +
                        )
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    if len(block_out_channels) != len(down_block_types):
         
     | 
| 514 | 
         
            +
                        raise ValueError(
         
     | 
| 515 | 
         
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         
     | 
| 516 | 
         
            +
                        )
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         
     | 
| 519 | 
         
            +
                        raise ValueError(
         
     | 
| 520 | 
         
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         
     | 
| 521 | 
         
            +
                        )
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         
     | 
| 524 | 
         
            +
                        raise ValueError(
         
     | 
| 525 | 
         
            +
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         
     | 
| 526 | 
         
            +
                        )
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         
     | 
| 529 | 
         
            +
                        raise ValueError(
         
     | 
| 530 | 
         
            +
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 531 | 
         
            +
                        )
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         
     | 
| 534 | 
         
            +
                        raise ValueError(
         
     | 
| 535 | 
         
            +
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         
     | 
| 536 | 
         
            +
                        )
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         
     | 
| 539 | 
         
            +
                        raise ValueError(
         
     | 
| 540 | 
         
            +
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         
     | 
| 541 | 
         
            +
                        )
         
     | 
| 542 | 
         
            +
                    if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
         
     | 
| 543 | 
         
            +
                        for layer_number_per_block in transformer_layers_per_block:
         
     | 
| 544 | 
         
            +
                            if isinstance(layer_number_per_block, list):
         
     | 
| 545 | 
         
            +
                                raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                def _set_time_proj(
         
     | 
| 548 | 
         
            +
                    self,
         
     | 
| 549 | 
         
            +
                    time_embedding_type: str,
         
     | 
| 550 | 
         
            +
                    block_out_channels: int,
         
     | 
| 551 | 
         
            +
                    flip_sin_to_cos: bool,
         
     | 
| 552 | 
         
            +
                    freq_shift: float,
         
     | 
| 553 | 
         
            +
                    time_embedding_dim: int,
         
     | 
| 554 | 
         
            +
                ) -> Tuple[int, int]:
         
     | 
| 555 | 
         
            +
                    if time_embedding_type == "fourier":
         
     | 
| 556 | 
         
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         
     | 
| 557 | 
         
            +
                        if time_embed_dim % 2 != 0:
         
     | 
| 558 | 
         
            +
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         
     | 
| 559 | 
         
            +
                        self.time_proj = GaussianFourierProjection(
         
     | 
| 560 | 
         
            +
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         
     | 
| 561 | 
         
            +
                        )
         
     | 
| 562 | 
         
            +
                        timestep_input_dim = time_embed_dim
         
     | 
| 563 | 
         
            +
                    elif time_embedding_type == "positional":
         
     | 
| 564 | 
         
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         
     | 
| 567 | 
         
            +
                        timestep_input_dim = block_out_channels[0]
         
     | 
| 568 | 
         
            +
                    else:
         
     | 
| 569 | 
         
            +
                        raise ValueError(
         
     | 
| 570 | 
         
            +
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         
     | 
| 571 | 
         
            +
                        )
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    return time_embed_dim, timestep_input_dim
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
                def _set_encoder_hid_proj(
         
     | 
| 576 | 
         
            +
                    self,
         
     | 
| 577 | 
         
            +
                    encoder_hid_dim_type: Optional[str],
         
     | 
| 578 | 
         
            +
                    cross_attention_dim: Union[int, Tuple[int]],
         
     | 
| 579 | 
         
            +
                    encoder_hid_dim: Optional[int],
         
     | 
| 580 | 
         
            +
                ):
         
     | 
| 581 | 
         
            +
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         
     | 
| 582 | 
         
            +
                        encoder_hid_dim_type = "text_proj"
         
     | 
| 583 | 
         
            +
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         
     | 
| 584 | 
         
            +
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         
     | 
| 587 | 
         
            +
                        raise ValueError(
         
     | 
| 588 | 
         
            +
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         
     | 
| 589 | 
         
            +
                        )
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                    if encoder_hid_dim_type == "text_proj":
         
     | 
| 592 | 
         
            +
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         
     | 
| 593 | 
         
            +
                    elif encoder_hid_dim_type == "text_image_proj":
         
     | 
| 594 | 
         
            +
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 595 | 
         
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 596 | 
         
            +
                        # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
         
     | 
| 597 | 
         
            +
                        self.encoder_hid_proj = TextImageProjection(
         
     | 
| 598 | 
         
            +
                            text_embed_dim=encoder_hid_dim,
         
     | 
| 599 | 
         
            +
                            image_embed_dim=cross_attention_dim,
         
     | 
| 600 | 
         
            +
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 601 | 
         
            +
                        )
         
     | 
| 602 | 
         
            +
                    elif encoder_hid_dim_type == "image_proj":
         
     | 
| 603 | 
         
            +
                        # Kandinsky 2.2
         
     | 
| 604 | 
         
            +
                        self.encoder_hid_proj = ImageProjection(
         
     | 
| 605 | 
         
            +
                            image_embed_dim=encoder_hid_dim,
         
     | 
| 606 | 
         
            +
                            cross_attention_dim=cross_attention_dim,
         
     | 
| 607 | 
         
            +
                        )
         
     | 
| 608 | 
         
            +
                    elif encoder_hid_dim_type is not None:
         
     | 
| 609 | 
         
            +
                        raise ValueError(
         
     | 
| 610 | 
         
            +
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         
     | 
| 611 | 
         
            +
                        )
         
     | 
| 612 | 
         
            +
                    else:
         
     | 
| 613 | 
         
            +
                        self.encoder_hid_proj = None
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                def _set_class_embedding(
         
     | 
| 616 | 
         
            +
                    self,
         
     | 
| 617 | 
         
            +
                    class_embed_type: Optional[str],
         
     | 
| 618 | 
         
            +
                    act_fn: str,
         
     | 
| 619 | 
         
            +
                    num_class_embeds: Optional[int],
         
     | 
| 620 | 
         
            +
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 621 | 
         
            +
                    time_embed_dim: int,
         
     | 
| 622 | 
         
            +
                    timestep_input_dim: int,
         
     | 
| 623 | 
         
            +
                ):
         
     | 
| 624 | 
         
            +
                    if class_embed_type is None and num_class_embeds is not None:
         
     | 
| 625 | 
         
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         
     | 
| 626 | 
         
            +
                    elif class_embed_type == "timestep":
         
     | 
| 627 | 
         
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         
     | 
| 628 | 
         
            +
                    elif class_embed_type == "identity":
         
     | 
| 629 | 
         
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         
     | 
| 630 | 
         
            +
                    elif class_embed_type == "projection":
         
     | 
| 631 | 
         
            +
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 632 | 
         
            +
                            raise ValueError(
         
     | 
| 633 | 
         
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 634 | 
         
            +
                            )
         
     | 
| 635 | 
         
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         
     | 
| 636 | 
         
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         
     | 
| 637 | 
         
            +
                        # 2. it projects from an arbitrary input dimension.
         
     | 
| 638 | 
         
            +
                        #
         
     | 
| 639 | 
         
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         
     | 
| 640 | 
         
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         
     | 
| 641 | 
         
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         
     | 
| 642 | 
         
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 643 | 
         
            +
                    elif class_embed_type == "simple_projection":
         
     | 
| 644 | 
         
            +
                        if projection_class_embeddings_input_dim is None:
         
     | 
| 645 | 
         
            +
                            raise ValueError(
         
     | 
| 646 | 
         
            +
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         
     | 
| 647 | 
         
            +
                            )
         
     | 
| 648 | 
         
            +
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 649 | 
         
            +
                    else:
         
     | 
| 650 | 
         
            +
                        self.class_embedding = None
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
                def _set_add_embedding(
         
     | 
| 653 | 
         
            +
                    self,
         
     | 
| 654 | 
         
            +
                    addition_embed_type: str,
         
     | 
| 655 | 
         
            +
                    addition_embed_type_num_heads: int,
         
     | 
| 656 | 
         
            +
                    addition_time_embed_dim: Optional[int],
         
     | 
| 657 | 
         
            +
                    flip_sin_to_cos: bool,
         
     | 
| 658 | 
         
            +
                    freq_shift: float,
         
     | 
| 659 | 
         
            +
                    cross_attention_dim: Optional[int],
         
     | 
| 660 | 
         
            +
                    encoder_hid_dim: Optional[int],
         
     | 
| 661 | 
         
            +
                    projection_class_embeddings_input_dim: Optional[int],
         
     | 
| 662 | 
         
            +
                    time_embed_dim: int,
         
     | 
| 663 | 
         
            +
                ):
         
     | 
| 664 | 
         
            +
                    if addition_embed_type == "text":
         
     | 
| 665 | 
         
            +
                        if encoder_hid_dim is not None:
         
     | 
| 666 | 
         
            +
                            text_time_embedding_from_dim = encoder_hid_dim
         
     | 
| 667 | 
         
            +
                        else:
         
     | 
| 668 | 
         
            +
                            text_time_embedding_from_dim = cross_attention_dim
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                        self.add_embedding = TextTimeEmbedding(
         
     | 
| 671 | 
         
            +
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         
     | 
| 672 | 
         
            +
                        )
         
     | 
| 673 | 
         
            +
                    elif addition_embed_type == "text_image":
         
     | 
| 674 | 
         
            +
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         
     | 
| 675 | 
         
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         
     | 
| 676 | 
         
            +
                        # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
         
     | 
| 677 | 
         
            +
                        self.add_embedding = TextImageTimeEmbedding(
         
     | 
| 678 | 
         
            +
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         
     | 
| 679 | 
         
            +
                        )
         
     | 
| 680 | 
         
            +
                    elif addition_embed_type == "text_time":
         
     | 
| 681 | 
         
            +
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         
     | 
| 682 | 
         
            +
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         
     | 
| 683 | 
         
            +
                    elif addition_embed_type == "image":
         
     | 
| 684 | 
         
            +
                        # Kandinsky 2.2
         
     | 
| 685 | 
         
            +
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 686 | 
         
            +
                    elif addition_embed_type == "image_hint":
         
     | 
| 687 | 
         
            +
                        # Kandinsky 2.2 ControlNet
         
     | 
| 688 | 
         
            +
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         
     | 
| 689 | 
         
            +
                    elif addition_embed_type is not None:
         
     | 
| 690 | 
         
            +
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
         
     | 
| 693 | 
         
            +
                    if attention_type in ["gated", "gated-text-image"]:
         
     | 
| 694 | 
         
            +
                        positive_len = 768
         
     | 
| 695 | 
         
            +
                        if isinstance(cross_attention_dim, int):
         
     | 
| 696 | 
         
            +
                            positive_len = cross_attention_dim
         
     | 
| 697 | 
         
            +
                        elif isinstance(cross_attention_dim, (list, tuple)):
         
     | 
| 698 | 
         
            +
                            positive_len = cross_attention_dim[0]
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                        feature_type = "text-only" if attention_type == "gated" else "text-image"
         
     | 
| 701 | 
         
            +
                        self.position_net = GLIGENTextBoundingboxProjection(
         
     | 
| 702 | 
         
            +
                            positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
         
     | 
| 703 | 
         
            +
                        )
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                @property
         
     | 
| 706 | 
         
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         
     | 
| 707 | 
         
            +
                    r"""
         
     | 
| 708 | 
         
            +
                    Returns:
         
     | 
| 709 | 
         
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         
     | 
| 710 | 
         
            +
                        indexed by its weight name.
         
     | 
| 711 | 
         
            +
                    """
         
     | 
| 712 | 
         
            +
                    # set recursively
         
     | 
| 713 | 
         
            +
                    processors = {}
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         
     | 
| 716 | 
         
            +
                        if hasattr(module, "get_processor"):
         
     | 
| 717 | 
         
            +
                            processors[f"{name}.processor"] = module.get_processor()
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                        for sub_name, child in module.named_children():
         
     | 
| 720 | 
         
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                        return processors
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    for name, module in self.named_children():
         
     | 
| 725 | 
         
            +
                        fn_recursive_add_processors(name, module, processors)
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    return processors
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         
     | 
| 730 | 
         
            +
                    r"""
         
     | 
| 731 | 
         
            +
                    Sets the attention processor to use to compute attention.
         
     | 
| 732 | 
         
            +
             
     | 
| 733 | 
         
            +
                    Parameters:
         
     | 
| 734 | 
         
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         
     | 
| 735 | 
         
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         
     | 
| 736 | 
         
            +
                            for **all** `Attention` layers.
         
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         
     | 
| 739 | 
         
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                    """
         
     | 
| 742 | 
         
            +
                    count = len(self.attn_processors.keys())
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                    if isinstance(processor, dict) and len(processor) != count:
         
     | 
| 745 | 
         
            +
                        raise ValueError(
         
     | 
| 746 | 
         
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         
     | 
| 747 | 
         
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         
     | 
| 748 | 
         
            +
                        )
         
     | 
| 749 | 
         
            +
             
     | 
| 750 | 
         
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         
     | 
| 751 | 
         
            +
                        if hasattr(module, "set_processor"):
         
     | 
| 752 | 
         
            +
                            if not isinstance(processor, dict):
         
     | 
| 753 | 
         
            +
                                module.set_processor(processor)
         
     | 
| 754 | 
         
            +
                            else:
         
     | 
| 755 | 
         
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                        for sub_name, child in module.named_children():
         
     | 
| 758 | 
         
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         
     | 
| 759 | 
         
            +
             
     | 
| 760 | 
         
            +
                    for name, module in self.named_children():
         
     | 
| 761 | 
         
            +
                        fn_recursive_attn_processor(name, module, processor)
         
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
                def set_default_attn_processor(self):
         
     | 
| 764 | 
         
            +
                    """
         
     | 
| 765 | 
         
            +
                    Disables custom attention processors and sets the default attention implementation.
         
     | 
| 766 | 
         
            +
                    """
         
     | 
| 767 | 
         
            +
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 768 | 
         
            +
                        processor = AttnAddedKVProcessor()
         
     | 
| 769 | 
         
            +
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         
     | 
| 770 | 
         
            +
                        processor = AttnProcessor()
         
     | 
| 771 | 
         
            +
                    else:
         
     | 
| 772 | 
         
            +
                        raise ValueError(
         
     | 
| 773 | 
         
            +
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         
     | 
| 774 | 
         
            +
                        )
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
                    self.set_attn_processor(processor)
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
         
     | 
| 779 | 
         
            +
                    r"""
         
     | 
| 780 | 
         
            +
                    Enable sliced attention computation.
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         
     | 
| 783 | 
         
            +
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                    Args:
         
     | 
| 786 | 
         
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         
     | 
| 787 | 
         
            +
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         
     | 
| 788 | 
         
            +
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         
     | 
| 789 | 
         
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         
     | 
| 790 | 
         
            +
                            must be a multiple of `slice_size`.
         
     | 
| 791 | 
         
            +
                    """
         
     | 
| 792 | 
         
            +
                    sliceable_head_dims = []
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         
     | 
| 795 | 
         
            +
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 796 | 
         
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                        for child in module.children():
         
     | 
| 799 | 
         
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                    # retrieve number of attention layers
         
     | 
| 802 | 
         
            +
                    for module in self.children():
         
     | 
| 803 | 
         
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                    if slice_size == "auto":
         
     | 
| 808 | 
         
            +
                        # half the attention head size is usually a good trade-off between
         
     | 
| 809 | 
         
            +
                        # speed and memory
         
     | 
| 810 | 
         
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         
     | 
| 811 | 
         
            +
                    elif slice_size == "max":
         
     | 
| 812 | 
         
            +
                        # make smallest slice possible
         
     | 
| 813 | 
         
            +
                        slice_size = num_sliceable_layers * [1]
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                    if len(slice_size) != len(sliceable_head_dims):
         
     | 
| 818 | 
         
            +
                        raise ValueError(
         
     | 
| 819 | 
         
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         
     | 
| 820 | 
         
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         
     | 
| 821 | 
         
            +
                        )
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    for i in range(len(slice_size)):
         
     | 
| 824 | 
         
            +
                        size = slice_size[i]
         
     | 
| 825 | 
         
            +
                        dim = sliceable_head_dims[i]
         
     | 
| 826 | 
         
            +
                        if size is not None and size > dim:
         
     | 
| 827 | 
         
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
                    # Recursively walk through all the children.
         
     | 
| 830 | 
         
            +
                    # Any children which exposes the set_attention_slice method
         
     | 
| 831 | 
         
            +
                    # gets the message
         
     | 
| 832 | 
         
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         
     | 
| 833 | 
         
            +
                        if hasattr(module, "set_attention_slice"):
         
     | 
| 834 | 
         
            +
                            module.set_attention_slice(slice_size.pop())
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                        for child in module.children():
         
     | 
| 837 | 
         
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
                    reversed_slice_size = list(reversed(slice_size))
         
     | 
| 840 | 
         
            +
                    for module in self.children():
         
     | 
| 841 | 
         
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         
     | 
| 842 | 
         
            +
             
     | 
| 843 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 844 | 
         
            +
                    if hasattr(module, "gradient_checkpointing"):
         
     | 
| 845 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
         
     | 
| 848 | 
         
            +
                    r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
         
     | 
| 849 | 
         
            +
             
     | 
| 850 | 
         
            +
                    The suffixes after the scaling factors represent the stage blocks where they are being applied.
         
     | 
| 851 | 
         
            +
             
     | 
| 852 | 
         
            +
                    Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
         
     | 
| 853 | 
         
            +
                    are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
                    Args:
         
     | 
| 856 | 
         
            +
                        s1 (`float`):
         
     | 
| 857 | 
         
            +
                            Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
         
     | 
| 858 | 
         
            +
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 859 | 
         
            +
                        s2 (`float`):
         
     | 
| 860 | 
         
            +
                            Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
         
     | 
| 861 | 
         
            +
                            mitigate the "oversmoothing effect" in the enhanced denoising process.
         
     | 
| 862 | 
         
            +
                        b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
         
     | 
| 863 | 
         
            +
                        b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
         
     | 
| 864 | 
         
            +
                    """
         
     | 
| 865 | 
         
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 866 | 
         
            +
                        setattr(upsample_block, "s1", s1)
         
     | 
| 867 | 
         
            +
                        setattr(upsample_block, "s2", s2)
         
     | 
| 868 | 
         
            +
                        setattr(upsample_block, "b1", b1)
         
     | 
| 869 | 
         
            +
                        setattr(upsample_block, "b2", b2)
         
     | 
| 870 | 
         
            +
             
     | 
| 871 | 
         
            +
                def disable_freeu(self):
         
     | 
| 872 | 
         
            +
                    """Disables the FreeU mechanism."""
         
     | 
| 873 | 
         
            +
                    freeu_keys = {"s1", "s2", "b1", "b2"}
         
     | 
| 874 | 
         
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 875 | 
         
            +
                        for k in freeu_keys:
         
     | 
| 876 | 
         
            +
                            if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
         
     | 
| 877 | 
         
            +
                                setattr(upsample_block, k, None)
         
     | 
| 878 | 
         
            +
             
     | 
| 879 | 
         
            +
                def fuse_qkv_projections(self):
         
     | 
| 880 | 
         
            +
                    """
         
     | 
| 881 | 
         
            +
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
         
     | 
| 882 | 
         
            +
                    are fused. For cross-attention modules, key and value projection matrices are fused.
         
     | 
| 883 | 
         
            +
             
     | 
| 884 | 
         
            +
                    <Tip warning={true}>
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                    This API is 🧪 experimental.
         
     | 
| 887 | 
         
            +
             
     | 
| 888 | 
         
            +
                    </Tip>
         
     | 
| 889 | 
         
            +
                    """
         
     | 
| 890 | 
         
            +
                    self.original_attn_processors = None
         
     | 
| 891 | 
         
            +
             
     | 
| 892 | 
         
            +
                    for _, attn_processor in self.attn_processors.items():
         
     | 
| 893 | 
         
            +
                        if "Added" in str(attn_processor.__class__.__name__):
         
     | 
| 894 | 
         
            +
                            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                    self.original_attn_processors = self.attn_processors
         
     | 
| 897 | 
         
            +
             
     | 
| 898 | 
         
            +
                    for module in self.modules():
         
     | 
| 899 | 
         
            +
                        if isinstance(module, Attention):
         
     | 
| 900 | 
         
            +
                            module.fuse_projections(fuse=True)
         
     | 
| 901 | 
         
            +
             
     | 
| 902 | 
         
            +
                def unfuse_qkv_projections(self):
         
     | 
| 903 | 
         
            +
                    """Disables the fused QKV projection if enabled.
         
     | 
| 904 | 
         
            +
             
     | 
| 905 | 
         
            +
                    <Tip warning={true}>
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    This API is 🧪 experimental.
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
                    </Tip>
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
                    """
         
     | 
| 912 | 
         
            +
                    if self.original_attn_processors is not None:
         
     | 
| 913 | 
         
            +
                        self.set_attn_processor(self.original_attn_processors)
         
     | 
| 914 | 
         
            +
             
     | 
| 915 | 
         
            +
                def get_time_embed(
         
     | 
| 916 | 
         
            +
                    self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
         
     | 
| 917 | 
         
            +
                ) -> Optional[torch.Tensor]:
         
     | 
| 918 | 
         
            +
                    timesteps = timestep
         
     | 
| 919 | 
         
            +
                    if not torch.is_tensor(timesteps):
         
     | 
| 920 | 
         
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         
     | 
| 921 | 
         
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         
     | 
| 922 | 
         
            +
                        is_mps = sample.device.type == "mps"
         
     | 
| 923 | 
         
            +
                        if isinstance(timestep, float):
         
     | 
| 924 | 
         
            +
                            dtype = torch.float32 if is_mps else torch.float64
         
     | 
| 925 | 
         
            +
                        else:
         
     | 
| 926 | 
         
            +
                            dtype = torch.int32 if is_mps else torch.int64
         
     | 
| 927 | 
         
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         
     | 
| 928 | 
         
            +
                    elif len(timesteps.shape) == 0:
         
     | 
| 929 | 
         
            +
                        timesteps = timesteps[None].to(sample.device)
         
     | 
| 930 | 
         
            +
             
     | 
| 931 | 
         
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         
     | 
| 932 | 
         
            +
                    timesteps = timesteps.expand(sample.shape[0])
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                    t_emb = self.time_proj(timesteps)
         
     | 
| 935 | 
         
            +
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 936 | 
         
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         
     | 
| 937 | 
         
            +
                    # there might be better ways to encapsulate this.
         
     | 
| 938 | 
         
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         
     | 
| 939 | 
         
            +
                    return t_emb
         
     | 
| 940 | 
         
            +
             
     | 
| 941 | 
         
            +
                def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
         
     | 
| 942 | 
         
            +
                    class_emb = None
         
     | 
| 943 | 
         
            +
                    if self.class_embedding is not None:
         
     | 
| 944 | 
         
            +
                        if class_labels is None:
         
     | 
| 945 | 
         
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         
     | 
| 946 | 
         
            +
             
     | 
| 947 | 
         
            +
                        if self.config.class_embed_type == "timestep":
         
     | 
| 948 | 
         
            +
                            class_labels = self.time_proj(class_labels)
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         
     | 
| 951 | 
         
            +
                            # there might be better ways to encapsulate this.
         
     | 
| 952 | 
         
            +
                            class_labels = class_labels.to(dtype=sample.dtype)
         
     | 
| 953 | 
         
            +
             
     | 
| 954 | 
         
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         
     | 
| 955 | 
         
            +
                    return class_emb
         
     | 
| 956 | 
         
            +
             
     | 
| 957 | 
         
            +
                def get_aug_embed(
         
     | 
| 958 | 
         
            +
                    self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 959 | 
         
            +
                ) -> Optional[torch.Tensor]:
         
     | 
| 960 | 
         
            +
                    aug_emb = None
         
     | 
| 961 | 
         
            +
                    if self.config.addition_embed_type == "text":
         
     | 
| 962 | 
         
            +
                        aug_emb = self.add_embedding(encoder_hidden_states)
         
     | 
| 963 | 
         
            +
                    elif self.config.addition_embed_type == "text_image":
         
     | 
| 964 | 
         
            +
                        # Kandinsky 2.1 - style
         
     | 
| 965 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 966 | 
         
            +
                            raise ValueError(
         
     | 
| 967 | 
         
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 968 | 
         
            +
                            )
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 971 | 
         
            +
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         
     | 
| 972 | 
         
            +
                        aug_emb = self.add_embedding(text_embs, image_embs)
         
     | 
| 973 | 
         
            +
                    elif self.config.addition_embed_type == "text_time":
         
     | 
| 974 | 
         
            +
                        # SDXL - style
         
     | 
| 975 | 
         
            +
                        if "text_embeds" not in added_cond_kwargs:
         
     | 
| 976 | 
         
            +
                            raise ValueError(
         
     | 
| 977 | 
         
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 978 | 
         
            +
                            )
         
     | 
| 979 | 
         
            +
                        text_embeds = added_cond_kwargs.get("text_embeds")
         
     | 
| 980 | 
         
            +
                        if "time_ids" not in added_cond_kwargs:
         
     | 
| 981 | 
         
            +
                            raise ValueError(
         
     | 
| 982 | 
         
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         
     | 
| 983 | 
         
            +
                            )
         
     | 
| 984 | 
         
            +
                        time_ids = added_cond_kwargs.get("time_ids")
         
     | 
| 985 | 
         
            +
                        time_embeds = self.add_time_proj(time_ids.flatten())
         
     | 
| 986 | 
         
            +
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         
     | 
| 987 | 
         
            +
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         
     | 
| 988 | 
         
            +
                        add_embeds = add_embeds.to(emb.dtype)
         
     | 
| 989 | 
         
            +
                        aug_emb = self.add_embedding(add_embeds)
         
     | 
| 990 | 
         
            +
                    elif self.config.addition_embed_type == "image":
         
     | 
| 991 | 
         
            +
                        # Kandinsky 2.2 - style
         
     | 
| 992 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 993 | 
         
            +
                            raise ValueError(
         
     | 
| 994 | 
         
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         
     | 
| 995 | 
         
            +
                            )
         
     | 
| 996 | 
         
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 997 | 
         
            +
                        aug_emb = self.add_embedding(image_embs)
         
     | 
| 998 | 
         
            +
                    elif self.config.addition_embed_type == "image_hint":
         
     | 
| 999 | 
         
            +
                        # Kandinsky 2.2 - style
         
     | 
| 1000 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         
     | 
| 1001 | 
         
            +
                            raise ValueError(
         
     | 
| 1002 | 
         
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         
     | 
| 1003 | 
         
            +
                            )
         
     | 
| 1004 | 
         
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         
     | 
| 1005 | 
         
            +
                        hint = added_cond_kwargs.get("hint")
         
     | 
| 1006 | 
         
            +
                        aug_emb = self.add_embedding(image_embs, hint)
         
     | 
| 1007 | 
         
            +
                    return aug_emb
         
     | 
| 1008 | 
         
            +
             
     | 
| 1009 | 
         
            +
                def process_encoder_hidden_states(
         
     | 
| 1010 | 
         
            +
                    self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
         
     | 
| 1011 | 
         
            +
                ) -> torch.Tensor:
         
     | 
| 1012 | 
         
            +
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         
     | 
| 1013 | 
         
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         
     | 
| 1014 | 
         
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         
     | 
| 1015 | 
         
            +
                        # Kandinsky 2.1 - style
         
     | 
| 1016 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1017 | 
         
            +
                            raise ValueError(
         
     | 
| 1018 | 
         
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1019 | 
         
            +
                            )
         
     | 
| 1020 | 
         
            +
             
     | 
| 1021 | 
         
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1022 | 
         
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         
     | 
| 1023 | 
         
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         
     | 
| 1024 | 
         
            +
                        # Kandinsky 2.2 - style
         
     | 
| 1025 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1026 | 
         
            +
                            raise ValueError(
         
     | 
| 1027 | 
         
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1028 | 
         
            +
                            )
         
     | 
| 1029 | 
         
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1030 | 
         
            +
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         
     | 
| 1031 | 
         
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
         
     | 
| 1032 | 
         
            +
                        if "image_embeds" not in added_cond_kwargs:
         
     | 
| 1033 | 
         
            +
                            raise ValueError(
         
     | 
| 1034 | 
         
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         
     | 
| 1035 | 
         
            +
                            )
         
     | 
| 1036 | 
         
            +
                        
         
     | 
| 1037 | 
         
            +
                        if hasattr(self, 'text_encoder_hid_proj') and not self.text_encoder_hid_proj is None:
         
     | 
| 1038 | 
         
            +
                            encoder_hidden_states = self.text_encoder_hid_proj( encoder_hidden_states )
         
     | 
| 1039 | 
         
            +
                        
         
     | 
| 1040 | 
         
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         
     | 
| 1041 | 
         
            +
                        image_embeds = self.encoder_hid_proj(image_embeds)
         
     | 
| 1042 | 
         
            +
                        encoder_hidden_states = (encoder_hidden_states, image_embeds)
         
     | 
| 1043 | 
         
            +
                    return encoder_hidden_states
         
     | 
| 1044 | 
         
            +
             
     | 
| 1045 | 
         
            +
                def forward(
         
     | 
| 1046 | 
         
            +
                    self,
         
     | 
| 1047 | 
         
            +
                    sample: torch.Tensor,
         
     | 
| 1048 | 
         
            +
                    timestep: Union[torch.Tensor, float, int],
         
     | 
| 1049 | 
         
            +
                    encoder_hidden_states: torch.Tensor,
         
     | 
| 1050 | 
         
            +
                    class_labels: Optional[torch.Tensor] = None,
         
     | 
| 1051 | 
         
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         
     | 
| 1052 | 
         
            +
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1053 | 
         
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1054 | 
         
            +
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 1055 | 
         
            +
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1056 | 
         
            +
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         
     | 
| 1057 | 
         
            +
                    down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         
     | 
| 1058 | 
         
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1059 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 1060 | 
         
            +
                ) -> Union[UNet2DConditionOutput, Tuple]:
         
     | 
| 1061 | 
         
            +
                    r"""
         
     | 
| 1062 | 
         
            +
                    The [`UNet2DConditionModel`] forward method.
         
     | 
| 1063 | 
         
            +
             
     | 
| 1064 | 
         
            +
                    Args:
         
     | 
| 1065 | 
         
            +
                        sample (`torch.Tensor`):
         
     | 
| 1066 | 
         
            +
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         
     | 
| 1067 | 
         
            +
                        timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
         
     | 
| 1068 | 
         
            +
                        encoder_hidden_states (`torch.Tensor`):
         
     | 
| 1069 | 
         
            +
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         
     | 
| 1070 | 
         
            +
                        class_labels (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1071 | 
         
            +
                            Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
         
     | 
| 1072 | 
         
            +
                        timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1073 | 
         
            +
                            Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
         
     | 
| 1074 | 
         
            +
                            through the `self.time_embedding` layer to obtain the timestep embeddings.
         
     | 
| 1075 | 
         
            +
                        attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
         
     | 
| 1076 | 
         
            +
                            An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
         
     | 
| 1077 | 
         
            +
                            is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
         
     | 
| 1078 | 
         
            +
                            negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1079 | 
         
            +
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 1080 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 1081 | 
         
            +
                            `self.processor` in
         
     | 
| 1082 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 1083 | 
         
            +
                        added_cond_kwargs: (`dict`, *optional*):
         
     | 
| 1084 | 
         
            +
                            A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
         
     | 
| 1085 | 
         
            +
                            are passed along to the UNet blocks.
         
     | 
| 1086 | 
         
            +
                        down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1087 | 
         
            +
                            A tuple of tensors that if specified are added to the residuals of down unet blocks.
         
     | 
| 1088 | 
         
            +
                        mid_block_additional_residual: (`torch.Tensor`, *optional*):
         
     | 
| 1089 | 
         
            +
                            A tensor that if specified is added to the residual of the middle unet block.
         
     | 
| 1090 | 
         
            +
                        down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
         
     | 
| 1091 | 
         
            +
                            additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
         
     | 
| 1092 | 
         
            +
                        encoder_attention_mask (`torch.Tensor`):
         
     | 
| 1093 | 
         
            +
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         
     | 
| 1094 | 
         
            +
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         
     | 
| 1095 | 
         
            +
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         
     | 
| 1096 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 1097 | 
         
            +
                            Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         
     | 
| 1098 | 
         
            +
                            tuple.
         
     | 
| 1099 | 
         
            +
             
     | 
| 1100 | 
         
            +
                    Returns:
         
     | 
| 1101 | 
         
            +
                        [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         
     | 
| 1102 | 
         
            +
                            If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
         
     | 
| 1103 | 
         
            +
                            otherwise a `tuple` is returned where the first element is the sample tensor.
         
     | 
| 1104 | 
         
            +
                    """
         
     | 
| 1105 | 
         
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         
     | 
| 1106 | 
         
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         
     | 
| 1107 | 
         
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         
     | 
| 1108 | 
         
            +
                    # on the fly if necessary.
         
     | 
| 1109 | 
         
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         
     | 
| 1110 | 
         
            +
             
     | 
| 1111 | 
         
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         
     | 
| 1112 | 
         
            +
                    forward_upsample_size = False
         
     | 
| 1113 | 
         
            +
                    upsample_size = None
         
     | 
| 1114 | 
         
            +
             
     | 
| 1115 | 
         
            +
                    for dim in sample.shape[-2:]:
         
     | 
| 1116 | 
         
            +
                        if dim % default_overall_up_factor != 0:
         
     | 
| 1117 | 
         
            +
                            # Forward upsample size to force interpolation output size.
         
     | 
| 1118 | 
         
            +
                            forward_upsample_size = True
         
     | 
| 1119 | 
         
            +
                            break
         
     | 
| 1120 | 
         
            +
             
     | 
| 1121 | 
         
            +
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
         
     | 
| 1122 | 
         
            +
                    # expects mask of shape:
         
     | 
| 1123 | 
         
            +
                    #   [batch, key_tokens]
         
     | 
| 1124 | 
         
            +
                    # adds singleton query_tokens dimension:
         
     | 
| 1125 | 
         
            +
                    #   [batch,                    1, key_tokens]
         
     | 
| 1126 | 
         
            +
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         
     | 
| 1127 | 
         
            +
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         
     | 
| 1128 | 
         
            +
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         
     | 
| 1129 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 1130 | 
         
            +
                        # assume that mask is expressed as:
         
     | 
| 1131 | 
         
            +
                        #   (1 = keep,      0 = discard)
         
     | 
| 1132 | 
         
            +
                        # convert mask into a bias that can be added to attention scores:
         
     | 
| 1133 | 
         
            +
                        #       (keep = +0,     discard = -10000.0)
         
     | 
| 1134 | 
         
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1135 | 
         
            +
                        attention_mask = attention_mask.unsqueeze(1)
         
     | 
| 1136 | 
         
            +
             
     | 
| 1137 | 
         
            +
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         
     | 
| 1138 | 
         
            +
                    if encoder_attention_mask is not None:
         
     | 
| 1139 | 
         
            +
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         
     | 
| 1140 | 
         
            +
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         
     | 
| 1141 | 
         
            +
             
     | 
| 1142 | 
         
            +
                    # 0. center input if necessary
         
     | 
| 1143 | 
         
            +
                    if self.config.center_input_sample:
         
     | 
| 1144 | 
         
            +
                        sample = 2 * sample - 1.0
         
     | 
| 1145 | 
         
            +
             
     | 
| 1146 | 
         
            +
                    # 1. time
         
     | 
| 1147 | 
         
            +
                    t_emb = self.get_time_embed(sample=sample, timestep=timestep)
         
     | 
| 1148 | 
         
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         
     | 
| 1149 | 
         
            +
                    aug_emb = None
         
     | 
| 1150 | 
         
            +
             
     | 
| 1151 | 
         
            +
                    class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
         
     | 
| 1152 | 
         
            +
                    if class_emb is not None:
         
     | 
| 1153 | 
         
            +
                        if self.config.class_embeddings_concat:
         
     | 
| 1154 | 
         
            +
                            emb = torch.cat([emb, class_emb], dim=-1)
         
     | 
| 1155 | 
         
            +
                        else:
         
     | 
| 1156 | 
         
            +
                            emb = emb + class_emb
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                    aug_emb = self.get_aug_embed(
         
     | 
| 1159 | 
         
            +
                        emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1160 | 
         
            +
                    )
         
     | 
| 1161 | 
         
            +
                    if self.config.addition_embed_type == "image_hint":
         
     | 
| 1162 | 
         
            +
                        aug_emb, hint = aug_emb
         
     | 
| 1163 | 
         
            +
                        sample = torch.cat([sample, hint], dim=1)
         
     | 
| 1164 | 
         
            +
             
     | 
| 1165 | 
         
            +
                    emb = emb + aug_emb if aug_emb is not None else emb
         
     | 
| 1166 | 
         
            +
             
     | 
| 1167 | 
         
            +
                    if self.time_embed_act is not None:
         
     | 
| 1168 | 
         
            +
                        emb = self.time_embed_act(emb)
         
     | 
| 1169 | 
         
            +
             
     | 
| 1170 | 
         
            +
                    encoder_hidden_states = self.process_encoder_hidden_states(
         
     | 
| 1171 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
         
     | 
| 1172 | 
         
            +
                    )
         
     | 
| 1173 | 
         
            +
             
     | 
| 1174 | 
         
            +
                    # 2. pre-process
         
     | 
| 1175 | 
         
            +
                    sample = self.conv_in(sample)
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                    # 2.5 GLIGEN position net
         
     | 
| 1178 | 
         
            +
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
         
     | 
| 1179 | 
         
            +
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1180 | 
         
            +
                        gligen_args = cross_attention_kwargs.pop("gligen")
         
     | 
| 1181 | 
         
            +
                        cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
         
     | 
| 1182 | 
         
            +
             
     | 
| 1183 | 
         
            +
                    # 3. down
         
     | 
| 1184 | 
         
            +
                    # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
         
     | 
| 1185 | 
         
            +
                    # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
         
     | 
| 1186 | 
         
            +
                    if cross_attention_kwargs is not None:
         
     | 
| 1187 | 
         
            +
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         
     | 
| 1188 | 
         
            +
                        lora_scale = cross_attention_kwargs.pop("scale", 1.0)
         
     | 
| 1189 | 
         
            +
                    else:
         
     | 
| 1190 | 
         
            +
                        lora_scale = 1.0
         
     | 
| 1191 | 
         
            +
             
     | 
| 1192 | 
         
            +
                    if USE_PEFT_BACKEND:
         
     | 
| 1193 | 
         
            +
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         
     | 
| 1194 | 
         
            +
                        scale_lora_layers(self, lora_scale)
         
     | 
| 1195 | 
         
            +
             
     | 
| 1196 | 
         
            +
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         
     | 
| 1197 | 
         
            +
                    # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
         
     | 
| 1198 | 
         
            +
                    is_adapter = down_intrablock_additional_residuals is not None
         
     | 
| 1199 | 
         
            +
                    # maintain backward compatibility for legacy usage, where
         
     | 
| 1200 | 
         
            +
                    #       T2I-Adapter and ControlNet both use down_block_additional_residuals arg
         
     | 
| 1201 | 
         
            +
                    #       but can only use one or the other
         
     | 
| 1202 | 
         
            +
                    if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
         
     | 
| 1203 | 
         
            +
                        deprecate(
         
     | 
| 1204 | 
         
            +
                            "T2I should not use down_block_additional_residuals",
         
     | 
| 1205 | 
         
            +
                            "1.3.0",
         
     | 
| 1206 | 
         
            +
                            "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
         
     | 
| 1207 | 
         
            +
                                   and will be removed in diffusers 1.3.0.  `down_block_additional_residuals` should only be used \
         
     | 
| 1208 | 
         
            +
                                   for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
         
     | 
| 1209 | 
         
            +
                            standard_warn=False,
         
     | 
| 1210 | 
         
            +
                        )
         
     | 
| 1211 | 
         
            +
                        down_intrablock_additional_residuals = down_block_additional_residuals
         
     | 
| 1212 | 
         
            +
                        is_adapter = True
         
     | 
| 1213 | 
         
            +
             
     | 
| 1214 | 
         
            +
                    down_block_res_samples = (sample,)
         
     | 
| 1215 | 
         
            +
                    for downsample_block in self.down_blocks:
         
     | 
| 1216 | 
         
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         
     | 
| 1217 | 
         
            +
                            # For t2i-adapter CrossAttnDownBlock2D
         
     | 
| 1218 | 
         
            +
                            additional_residuals = {}
         
     | 
| 1219 | 
         
            +
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1220 | 
         
            +
                                additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
         
     | 
| 1221 | 
         
            +
             
     | 
| 1222 | 
         
            +
                            sample, res_samples = downsample_block(
         
     | 
| 1223 | 
         
            +
                                hidden_states=sample,
         
     | 
| 1224 | 
         
            +
                                temb=emb,
         
     | 
| 1225 | 
         
            +
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1226 | 
         
            +
                                attention_mask=attention_mask,
         
     | 
| 1227 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1228 | 
         
            +
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1229 | 
         
            +
                                **additional_residuals,
         
     | 
| 1230 | 
         
            +
                            )
         
     | 
| 1231 | 
         
            +
                        else:
         
     | 
| 1232 | 
         
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         
     | 
| 1233 | 
         
            +
                            if is_adapter and len(down_intrablock_additional_residuals) > 0:
         
     | 
| 1234 | 
         
            +
                                sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1235 | 
         
            +
             
     | 
| 1236 | 
         
            +
                        down_block_res_samples += res_samples
         
     | 
| 1237 | 
         
            +
             
     | 
| 1238 | 
         
            +
                    if is_controlnet:
         
     | 
| 1239 | 
         
            +
                        new_down_block_res_samples = ()
         
     | 
| 1240 | 
         
            +
             
     | 
| 1241 | 
         
            +
                        for down_block_res_sample, down_block_additional_residual in zip(
         
     | 
| 1242 | 
         
            +
                            down_block_res_samples, down_block_additional_residuals
         
     | 
| 1243 | 
         
            +
                        ):
         
     | 
| 1244 | 
         
            +
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         
     | 
| 1245 | 
         
            +
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         
     | 
| 1246 | 
         
            +
             
     | 
| 1247 | 
         
            +
                        down_block_res_samples = new_down_block_res_samples
         
     | 
| 1248 | 
         
            +
             
     | 
| 1249 | 
         
            +
                    # 4. mid
         
     | 
| 1250 | 
         
            +
                    if self.mid_block is not None:
         
     | 
| 1251 | 
         
            +
                        if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
         
     | 
| 1252 | 
         
            +
                            sample = self.mid_block(
         
     | 
| 1253 | 
         
            +
                                sample,
         
     | 
| 1254 | 
         
            +
                                emb,
         
     | 
| 1255 | 
         
            +
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1256 | 
         
            +
                                attention_mask=attention_mask,
         
     | 
| 1257 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1258 | 
         
            +
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1259 | 
         
            +
                            )
         
     | 
| 1260 | 
         
            +
                        else:
         
     | 
| 1261 | 
         
            +
                            sample = self.mid_block(sample, emb)
         
     | 
| 1262 | 
         
            +
             
     | 
| 1263 | 
         
            +
                        # To support T2I-Adapter-XL
         
     | 
| 1264 | 
         
            +
                        if (
         
     | 
| 1265 | 
         
            +
                            is_adapter
         
     | 
| 1266 | 
         
            +
                            and len(down_intrablock_additional_residuals) > 0
         
     | 
| 1267 | 
         
            +
                            and sample.shape == down_intrablock_additional_residuals[0].shape
         
     | 
| 1268 | 
         
            +
                        ):
         
     | 
| 1269 | 
         
            +
                            sample += down_intrablock_additional_residuals.pop(0)
         
     | 
| 1270 | 
         
            +
             
     | 
| 1271 | 
         
            +
                    if is_controlnet:
         
     | 
| 1272 | 
         
            +
                        sample = sample + mid_block_additional_residual
         
     | 
| 1273 | 
         
            +
             
     | 
| 1274 | 
         
            +
                    # 5. up
         
     | 
| 1275 | 
         
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         
     | 
| 1276 | 
         
            +
                        is_final_block = i == len(self.up_blocks) - 1
         
     | 
| 1277 | 
         
            +
             
     | 
| 1278 | 
         
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         
     | 
| 1279 | 
         
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         
     | 
| 1280 | 
         
            +
             
     | 
| 1281 | 
         
            +
                        # if we have not reached the final block and need to forward the
         
     | 
| 1282 | 
         
            +
                        # upsample size, we do it here
         
     | 
| 1283 | 
         
            +
                        if not is_final_block and forward_upsample_size:
         
     | 
| 1284 | 
         
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         
     | 
| 1285 | 
         
            +
             
     | 
| 1286 | 
         
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         
     | 
| 1287 | 
         
            +
                            sample = upsample_block(
         
     | 
| 1288 | 
         
            +
                                hidden_states=sample,
         
     | 
| 1289 | 
         
            +
                                temb=emb,
         
     | 
| 1290 | 
         
            +
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1291 | 
         
            +
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 1292 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 1293 | 
         
            +
                                upsample_size=upsample_size,
         
     | 
| 1294 | 
         
            +
                                attention_mask=attention_mask,
         
     | 
| 1295 | 
         
            +
                                encoder_attention_mask=encoder_attention_mask,
         
     | 
| 1296 | 
         
            +
                            )
         
     | 
| 1297 | 
         
            +
                        else:
         
     | 
| 1298 | 
         
            +
                            sample = upsample_block(
         
     | 
| 1299 | 
         
            +
                                hidden_states=sample,
         
     | 
| 1300 | 
         
            +
                                temb=emb,
         
     | 
| 1301 | 
         
            +
                                res_hidden_states_tuple=res_samples,
         
     | 
| 1302 | 
         
            +
                                upsample_size=upsample_size,
         
     | 
| 1303 | 
         
            +
                            )
         
     | 
| 1304 | 
         
            +
             
     | 
| 1305 | 
         
            +
                    # 6. post-process
         
     | 
| 1306 | 
         
            +
                    if self.conv_norm_out:
         
     | 
| 1307 | 
         
            +
                        sample = self.conv_norm_out(sample)
         
     | 
| 1308 | 
         
            +
                        sample = self.conv_act(sample)
         
     | 
| 1309 | 
         
            +
                    sample = self.conv_out(sample)
         
     | 
| 1310 | 
         
            +
             
     | 
| 1311 | 
         
            +
                    if USE_PEFT_BACKEND:
         
     | 
| 1312 | 
         
            +
                        # remove `lora_scale` from each PEFT layer
         
     | 
| 1313 | 
         
            +
                        unscale_lora_layers(self, lora_scale)
         
     | 
| 1314 | 
         
            +
             
     | 
| 1315 | 
         
            +
                    if not return_dict:
         
     | 
| 1316 | 
         
            +
                        return (sample,)
         
     | 
| 1317 | 
         
            +
             
     | 
| 1318 | 
         
            +
                    return UNet2DConditionOutput(sample=sample)
         
     | 
    	
        kolors/pipelines/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py
    ADDED
    
    | 
         @@ -0,0 +1,841 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
            import sys
         
     | 
| 15 | 
         
            +
            import os
         
     | 
| 16 | 
         
            +
            sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
         
     | 
| 17 | 
         
            +
            from kolors.models.modeling_chatglm import ChatGLMModel
         
     | 
| 18 | 
         
            +
            from kolors.models.tokenization_chatglm import ChatGLMTokenizer
         
     | 
| 19 | 
         
            +
            import inspect
         
     | 
| 20 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         
     | 
| 21 | 
         
            +
            import torch
         
     | 
| 22 | 
         
            +
            from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
         
     | 
| 23 | 
         
            +
            from transformers import XLMRobertaModel, ChineseCLIPTextModel
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            from diffusers.image_processor import VaeImageProcessor
         
     | 
| 26 | 
         
            +
            from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
         
     | 
| 27 | 
         
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel
         
     | 
| 28 | 
         
            +
            from diffusers.models.attention_processor import (
         
     | 
| 29 | 
         
            +
                AttnProcessor2_0,
         
     | 
| 30 | 
         
            +
                LoRAAttnProcessor2_0,
         
     | 
| 31 | 
         
            +
                LoRAXFormersAttnProcessor,
         
     | 
| 32 | 
         
            +
                XFormersAttnProcessor,
         
     | 
| 33 | 
         
            +
            )
         
     | 
| 34 | 
         
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         
     | 
| 35 | 
         
            +
            from diffusers.utils import (
         
     | 
| 36 | 
         
            +
                is_accelerate_available,
         
     | 
| 37 | 
         
            +
                is_accelerate_version,
         
     | 
| 38 | 
         
            +
                logging,
         
     | 
| 39 | 
         
            +
                replace_example_docstring,
         
     | 
| 40 | 
         
            +
            )
         
     | 
| 41 | 
         
            +
            try:
         
     | 
| 42 | 
         
            +
                from diffusers.utils import randn_tensor
         
     | 
| 43 | 
         
            +
            except:
         
     | 
| 44 | 
         
            +
                from diffusers.utils.torch_utils import randn_tensor
         
     | 
| 45 | 
         
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         
     | 
| 46 | 
         
            +
            from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 53 | 
         
            +
                Examples:
         
     | 
| 54 | 
         
            +
                    ```py
         
     | 
| 55 | 
         
            +
                    >>> import torch
         
     | 
| 56 | 
         
            +
                    >>> from diffusers import StableDiffusionXLPipeline
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    >>> pipe = StableDiffusionXLPipeline.from_pretrained(
         
     | 
| 59 | 
         
            +
                    ...     "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
         
     | 
| 60 | 
         
            +
                    ... )
         
     | 
| 61 | 
         
            +
                    >>> pipe = pipe.to("cuda")
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    >>> prompt = "a photo of an astronaut riding a horse on mars"
         
     | 
| 64 | 
         
            +
                    >>> image = pipe(prompt).images[0]
         
     | 
| 65 | 
         
            +
                    ```
         
     | 
| 66 | 
         
            +
            """
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
         
     | 
| 70 | 
         
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         
     | 
| 71 | 
         
            +
                """
         
     | 
| 72 | 
         
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         
     | 
| 73 | 
         
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         
     | 
| 74 | 
         
            +
                """
         
     | 
| 75 | 
         
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         
     | 
| 76 | 
         
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         
     | 
| 77 | 
         
            +
                # rescale the results from guidance (fixes overexposure)
         
     | 
| 78 | 
         
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         
     | 
| 79 | 
         
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         
     | 
| 80 | 
         
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         
     | 
| 81 | 
         
            +
                return noise_cfg
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
         
     | 
| 85 | 
         
            +
                r"""
         
     | 
| 86 | 
         
            +
                Pipeline for text-to-image generation using Stable Diffusion XL.
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         
     | 
| 89 | 
         
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                In addition the pipeline inherits the following loading methods:
         
     | 
| 92 | 
         
            +
                    - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
         
     | 
| 93 | 
         
            +
                    - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
         
     | 
| 94 | 
         
            +
                    - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                as well as the following saving methods:
         
     | 
| 97 | 
         
            +
                    - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                Args:
         
     | 
| 100 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 101 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 102 | 
         
            +
                    text_encoder ([`CLIPTextModel`]):
         
     | 
| 103 | 
         
            +
                        Frozen text-encoder. Stable Diffusion XL uses the text portion of
         
     | 
| 104 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         
     | 
| 105 | 
         
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 108 | 
         
            +
                        Tokenizer of class
         
     | 
| 109 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         
     | 
| 112 | 
         
            +
                    scheduler ([`SchedulerMixin`]):
         
     | 
| 113 | 
         
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         
     | 
| 114 | 
         
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         
     | 
| 115 | 
         
            +
                """
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def __init__(
         
     | 
| 118 | 
         
            +
                    self,
         
     | 
| 119 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 120 | 
         
            +
                    text_encoder: ChatGLMModel,
         
     | 
| 121 | 
         
            +
                    tokenizer: ChatGLMTokenizer,
         
     | 
| 122 | 
         
            +
                    unet: UNet2DConditionModel,
         
     | 
| 123 | 
         
            +
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 124 | 
         
            +
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 125 | 
         
            +
                ):
         
     | 
| 126 | 
         
            +
                    super().__init__()
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    self.register_modules(
         
     | 
| 129 | 
         
            +
                        vae=vae,
         
     | 
| 130 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 131 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 132 | 
         
            +
                        unet=unet,
         
     | 
| 133 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 134 | 
         
            +
                    )
         
     | 
| 135 | 
         
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 136 | 
         
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         
     | 
| 137 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 138 | 
         
            +
                    self.default_sample_size = self.unet.config.sample_size
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    # self.watermark = StableDiffusionXLWatermarker()
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
         
     | 
| 143 | 
         
            +
                def enable_vae_slicing(self):
         
     | 
| 144 | 
         
            +
                    r"""
         
     | 
| 145 | 
         
            +
                    Enable sliced VAE decoding.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
         
     | 
| 148 | 
         
            +
                    steps. This is useful to save some memory and allow larger batch sizes.
         
     | 
| 149 | 
         
            +
                    """
         
     | 
| 150 | 
         
            +
                    self.vae.enable_slicing()
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
         
     | 
| 153 | 
         
            +
                def disable_vae_slicing(self):
         
     | 
| 154 | 
         
            +
                    r"""
         
     | 
| 155 | 
         
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
         
     | 
| 156 | 
         
            +
                    computing decoding in one step.
         
     | 
| 157 | 
         
            +
                    """
         
     | 
| 158 | 
         
            +
                    self.vae.disable_slicing()
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
         
     | 
| 161 | 
         
            +
                def enable_vae_tiling(self):
         
     | 
| 162 | 
         
            +
                    r"""
         
     | 
| 163 | 
         
            +
                    Enable tiled VAE decoding.
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
         
     | 
| 166 | 
         
            +
                    several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
         
     | 
| 167 | 
         
            +
                    """
         
     | 
| 168 | 
         
            +
                    self.vae.enable_tiling()
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
         
     | 
| 171 | 
         
            +
                def disable_vae_tiling(self):
         
     | 
| 172 | 
         
            +
                    r"""
         
     | 
| 173 | 
         
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
         
     | 
| 174 | 
         
            +
                    computing decoding in one step.
         
     | 
| 175 | 
         
            +
                    """
         
     | 
| 176 | 
         
            +
                    self.vae.disable_tiling()
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                def enable_sequential_cpu_offload(self, gpu_id=0):
         
     | 
| 179 | 
         
            +
                    r"""
         
     | 
| 180 | 
         
            +
                    Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
         
     | 
| 181 | 
         
            +
                    text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
         
     | 
| 182 | 
         
            +
                    `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
         
     | 
| 183 | 
         
            +
                    Note that offloading happens on a submodule basis. Memory savings are higher than with
         
     | 
| 184 | 
         
            +
                    `enable_model_cpu_offload`, but performance is lower.
         
     | 
| 185 | 
         
            +
                    """
         
     | 
| 186 | 
         
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         
     | 
| 187 | 
         
            +
                        from accelerate import cpu_offload
         
     | 
| 188 | 
         
            +
                    else:
         
     | 
| 189 | 
         
            +
                        raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    device = torch.device(f"cuda:{gpu_id}")
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    if self.device.type != "cpu":
         
     | 
| 194 | 
         
            +
                        self.to("cpu", silence_dtype_warnings=True)
         
     | 
| 195 | 
         
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         
     | 
| 198 | 
         
            +
                        cpu_offload(cpu_offloaded_model, device)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                def enable_model_cpu_offload(self, gpu_id=0):
         
     | 
| 201 | 
         
            +
                    r"""
         
     | 
| 202 | 
         
            +
                    Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
         
     | 
| 203 | 
         
            +
                    to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
         
     | 
| 204 | 
         
            +
                    method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
         
     | 
| 205 | 
         
            +
                    `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
         
     | 
| 206 | 
         
            +
                    """
         
     | 
| 207 | 
         
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         
     | 
| 208 | 
         
            +
                        from accelerate import cpu_offload_with_hook
         
     | 
| 209 | 
         
            +
                    else:
         
     | 
| 210 | 
         
            +
                        raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    device = torch.device(f"cuda:{gpu_id}")
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    if self.device.type != "cpu":
         
     | 
| 215 | 
         
            +
                        self.to("cpu", silence_dtype_warnings=True)
         
     | 
| 216 | 
         
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    model_sequence = (
         
     | 
| 219 | 
         
            +
                        [self.text_encoder]
         
     | 
| 220 | 
         
            +
                    )
         
     | 
| 221 | 
         
            +
                    model_sequence.extend([self.unet, self.vae])
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                    hook = None
         
     | 
| 224 | 
         
            +
                    for cpu_offloaded_model in model_sequence:
         
     | 
| 225 | 
         
            +
                        _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                    # We'll offload the last model manually.
         
     | 
| 228 | 
         
            +
                    self.final_offload_hook = hook
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                @property
         
     | 
| 231 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
         
     | 
| 232 | 
         
            +
                def _execution_device(self):
         
     | 
| 233 | 
         
            +
                    r"""
         
     | 
| 234 | 
         
            +
                    Returns the device on which the pipeline's models will be executed. After calling
         
     | 
| 235 | 
         
            +
                    `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
         
     | 
| 236 | 
         
            +
                    hooks.
         
     | 
| 237 | 
         
            +
                    """
         
     | 
| 238 | 
         
            +
                    if not hasattr(self.unet, "_hf_hook"):
         
     | 
| 239 | 
         
            +
                        return self.device
         
     | 
| 240 | 
         
            +
                    for module in self.unet.modules():
         
     | 
| 241 | 
         
            +
                        if (
         
     | 
| 242 | 
         
            +
                            hasattr(module, "_hf_hook")
         
     | 
| 243 | 
         
            +
                            and hasattr(module._hf_hook, "execution_device")
         
     | 
| 244 | 
         
            +
                            and module._hf_hook.execution_device is not None
         
     | 
| 245 | 
         
            +
                        ):
         
     | 
| 246 | 
         
            +
                            return torch.device(module._hf_hook.execution_device)
         
     | 
| 247 | 
         
            +
                    return self.device
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                def encode_prompt(
         
     | 
| 250 | 
         
            +
                    self,
         
     | 
| 251 | 
         
            +
                    prompt,
         
     | 
| 252 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 253 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 254 | 
         
            +
                    do_classifier_free_guidance: bool = True,
         
     | 
| 255 | 
         
            +
                    negative_prompt=None,
         
     | 
| 256 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 257 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 258 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 259 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 260 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 261 | 
         
            +
                ):
         
     | 
| 262 | 
         
            +
                    r"""
         
     | 
| 263 | 
         
            +
                    Encodes the prompt into text encoder hidden states.
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                    Args:
         
     | 
| 266 | 
         
            +
                         prompt (`str` or `List[str]`, *optional*):
         
     | 
| 267 | 
         
            +
                            prompt to be encoded
         
     | 
| 268 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 269 | 
         
            +
                            torch device
         
     | 
| 270 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 271 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 272 | 
         
            +
                        do_classifier_free_guidance (`bool`):
         
     | 
| 273 | 
         
            +
                            whether to use classifier free guidance or not
         
     | 
| 274 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 275 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 276 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 277 | 
         
            +
                            less than `1`).
         
     | 
| 278 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 279 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 280 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 281 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 282 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 283 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 284 | 
         
            +
                            argument.
         
     | 
| 285 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 286 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 287 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 288 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 289 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 290 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 291 | 
         
            +
                            input argument.
         
     | 
| 292 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 293 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 294 | 
         
            +
                    """
         
     | 
| 295 | 
         
            +
                    # from IPython import embed; embed(); exit()
         
     | 
| 296 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 299 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 300 | 
         
            +
                    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
         
     | 
| 301 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 304 | 
         
            +
                        batch_size = 1
         
     | 
| 305 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 306 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 307 | 
         
            +
                    else:
         
     | 
| 308 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                    # Define tokenizers and text encoders
         
     | 
| 311 | 
         
            +
                    tokenizers = [self.tokenizer]
         
     | 
| 312 | 
         
            +
                    text_encoders = [self.text_encoder]
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 315 | 
         
            +
                        # textual inversion: procecss multi-vector tokens if necessary
         
     | 
| 316 | 
         
            +
                        prompt_embeds_list = []
         
     | 
| 317 | 
         
            +
                        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
         
     | 
| 318 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 319 | 
         
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                            text_inputs = tokenizer(
         
     | 
| 322 | 
         
            +
                                prompt,
         
     | 
| 323 | 
         
            +
                                padding="max_length",
         
     | 
| 324 | 
         
            +
                                max_length=256,
         
     | 
| 325 | 
         
            +
                                truncation=True,
         
     | 
| 326 | 
         
            +
                                return_tensors="pt",
         
     | 
| 327 | 
         
            +
                            ).to('cuda')
         
     | 
| 328 | 
         
            +
                            output = text_encoder(
         
     | 
| 329 | 
         
            +
                                    input_ids=text_inputs['input_ids'] ,
         
     | 
| 330 | 
         
            +
                                    attention_mask=text_inputs['attention_mask'],
         
     | 
| 331 | 
         
            +
                                    position_ids=text_inputs['position_ids'],
         
     | 
| 332 | 
         
            +
                                    output_hidden_states=True)
         
     | 
| 333 | 
         
            +
                            prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
         
     | 
| 334 | 
         
            +
                            pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
         
     | 
| 335 | 
         
            +
                            bs_embed, seq_len, _ = prompt_embeds.shape
         
     | 
| 336 | 
         
            +
                            prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 337 | 
         
            +
                            prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                            prompt_embeds_list.append(prompt_embeds)
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                        # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         
     | 
| 342 | 
         
            +
                        prompt_embeds = prompt_embeds_list[0]
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                    # get unconditional embeddings for classifier free guidance
         
     | 
| 345 | 
         
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         
     | 
| 346 | 
         
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         
     | 
| 347 | 
         
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         
     | 
| 348 | 
         
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         
     | 
| 349 | 
         
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         
     | 
| 350 | 
         
            +
                        # negative_prompt = negative_prompt or ""
         
     | 
| 351 | 
         
            +
                        uncond_tokens: List[str]
         
     | 
| 352 | 
         
            +
                        if negative_prompt is None:
         
     | 
| 353 | 
         
            +
                            uncond_tokens = [""] * batch_size
         
     | 
| 354 | 
         
            +
                        elif prompt is not None and type(prompt) is not type(negative_prompt):
         
     | 
| 355 | 
         
            +
                            raise TypeError(
         
     | 
| 356 | 
         
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         
     | 
| 357 | 
         
            +
                                f" {type(prompt)}."
         
     | 
| 358 | 
         
            +
                            )
         
     | 
| 359 | 
         
            +
                        elif isinstance(negative_prompt, str):
         
     | 
| 360 | 
         
            +
                            uncond_tokens = [negative_prompt]
         
     | 
| 361 | 
         
            +
                        elif batch_size != len(negative_prompt):
         
     | 
| 362 | 
         
            +
                            raise ValueError(
         
     | 
| 363 | 
         
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         
     | 
| 364 | 
         
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         
     | 
| 365 | 
         
            +
                                " the batch size of `prompt`."
         
     | 
| 366 | 
         
            +
                            )
         
     | 
| 367 | 
         
            +
                        else:
         
     | 
| 368 | 
         
            +
                            uncond_tokens = negative_prompt
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                        negative_prompt_embeds_list = []
         
     | 
| 371 | 
         
            +
                        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
         
     | 
| 372 | 
         
            +
                            # textual inversion: procecss multi-vector tokens if necessary
         
     | 
| 373 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 374 | 
         
            +
                                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                            max_length = prompt_embeds.shape[1]
         
     | 
| 377 | 
         
            +
                            uncond_input = tokenizer(
         
     | 
| 378 | 
         
            +
                                uncond_tokens,
         
     | 
| 379 | 
         
            +
                                padding="max_length",
         
     | 
| 380 | 
         
            +
                                max_length=max_length,
         
     | 
| 381 | 
         
            +
                                truncation=True,
         
     | 
| 382 | 
         
            +
                                return_tensors="pt",
         
     | 
| 383 | 
         
            +
                            ).to('cuda')
         
     | 
| 384 | 
         
            +
                            output = text_encoder(
         
     | 
| 385 | 
         
            +
                                    input_ids=uncond_input['input_ids'] ,
         
     | 
| 386 | 
         
            +
                                    attention_mask=uncond_input['attention_mask'],
         
     | 
| 387 | 
         
            +
                                    position_ids=uncond_input['position_ids'],
         
     | 
| 388 | 
         
            +
                                    output_hidden_states=True)
         
     | 
| 389 | 
         
            +
                            negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
         
     | 
| 390 | 
         
            +
                            negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 393 | 
         
            +
                                # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         
     | 
| 394 | 
         
            +
                                seq_len = negative_prompt_embeds.shape[1]
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 399 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.view(
         
     | 
| 400 | 
         
            +
                                    batch_size * num_images_per_prompt, seq_len, -1
         
     | 
| 401 | 
         
            +
                                )
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                                # For classifier free guidance, we need to do two forward passes.
         
     | 
| 404 | 
         
            +
                                # Here we concatenate the unconditional and text embeddings into a single batch
         
     | 
| 405 | 
         
            +
                                # to avoid doing two forward passes
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                        # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         
     | 
| 410 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds_list[0]
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                    bs_embed = pooled_prompt_embeds.shape[0]
         
     | 
| 413 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 414 | 
         
            +
                        bs_embed * num_images_per_prompt, -1
         
     | 
| 415 | 
         
            +
                    )
         
     | 
| 416 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 417 | 
         
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 418 | 
         
            +
                            bs_embed * num_images_per_prompt, -1
         
     | 
| 419 | 
         
            +
                        )
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         
     | 
| 424 | 
         
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         
     | 
| 425 | 
         
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         
     | 
| 426 | 
         
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         
     | 
| 427 | 
         
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         
     | 
| 428 | 
         
            +
                    # and should be between [0, 1]
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 431 | 
         
            +
                    extra_step_kwargs = {}
         
     | 
| 432 | 
         
            +
                    if accepts_eta:
         
     | 
| 433 | 
         
            +
                        extra_step_kwargs["eta"] = eta
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                    # check if the scheduler accepts generator
         
     | 
| 436 | 
         
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 437 | 
         
            +
                    if accepts_generator:
         
     | 
| 438 | 
         
            +
                        extra_step_kwargs["generator"] = generator
         
     | 
| 439 | 
         
            +
                    return extra_step_kwargs
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                def check_inputs(
         
     | 
| 442 | 
         
            +
                    self,
         
     | 
| 443 | 
         
            +
                    prompt,
         
     | 
| 444 | 
         
            +
                    height,
         
     | 
| 445 | 
         
            +
                    width,
         
     | 
| 446 | 
         
            +
                    callback_steps,
         
     | 
| 447 | 
         
            +
                    negative_prompt=None,
         
     | 
| 448 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 449 | 
         
            +
                    negative_prompt_embeds=None,
         
     | 
| 450 | 
         
            +
                    pooled_prompt_embeds=None,
         
     | 
| 451 | 
         
            +
                    negative_pooled_prompt_embeds=None,
         
     | 
| 452 | 
         
            +
                ):
         
     | 
| 453 | 
         
            +
                    if height % 8 != 0 or width % 8 != 0:
         
     | 
| 454 | 
         
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                    if (callback_steps is None) or (
         
     | 
| 457 | 
         
            +
                        callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
         
     | 
| 458 | 
         
            +
                    ):
         
     | 
| 459 | 
         
            +
                        raise ValueError(
         
     | 
| 460 | 
         
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         
     | 
| 461 | 
         
            +
                            f" {type(callback_steps)}."
         
     | 
| 462 | 
         
            +
                        )
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 465 | 
         
            +
                        raise ValueError(
         
     | 
| 466 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 467 | 
         
            +
                            " only forward one of the two."
         
     | 
| 468 | 
         
            +
                        )
         
     | 
| 469 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 470 | 
         
            +
                        raise ValueError(
         
     | 
| 471 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 472 | 
         
            +
                        )
         
     | 
| 473 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 474 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         
     | 
| 477 | 
         
            +
                        raise ValueError(
         
     | 
| 478 | 
         
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         
     | 
| 479 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 480 | 
         
            +
                        )
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         
     | 
| 483 | 
         
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         
     | 
| 484 | 
         
            +
                            raise ValueError(
         
     | 
| 485 | 
         
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         
     | 
| 486 | 
         
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         
     | 
| 487 | 
         
            +
                                f" {negative_prompt_embeds.shape}."
         
     | 
| 488 | 
         
            +
                            )
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         
     | 
| 491 | 
         
            +
                        raise ValueError(
         
     | 
| 492 | 
         
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         
     | 
| 493 | 
         
            +
                        )
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         
     | 
| 496 | 
         
            +
                        raise ValueError(
         
     | 
| 497 | 
         
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         
     | 
| 498 | 
         
            +
                        )
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         
     | 
| 501 | 
         
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         
     | 
| 502 | 
         
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         
     | 
| 503 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 504 | 
         
            +
                        raise ValueError(
         
     | 
| 505 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 506 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 507 | 
         
            +
                        )
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    if latents is None:
         
     | 
| 510 | 
         
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         
     | 
| 511 | 
         
            +
                    else:
         
     | 
| 512 | 
         
            +
                        latents = latents.to(device)
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         
     | 
| 515 | 
         
            +
                    latents = latents * self.scheduler.init_noise_sigma
         
     | 
| 516 | 
         
            +
                    return latents
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
         
     | 
| 519 | 
         
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    passed_add_embed_dim = (
         
     | 
| 522 | 
         
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
         
     | 
| 523 | 
         
            +
                    )
         
     | 
| 524 | 
         
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         
     | 
| 527 | 
         
            +
                        raise ValueError(
         
     | 
| 528 | 
         
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         
     | 
| 529 | 
         
            +
                        )
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         
     | 
| 532 | 
         
            +
                    return add_time_ids
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
         
     | 
| 535 | 
         
            +
                def upcast_vae(self):
         
     | 
| 536 | 
         
            +
                    dtype = self.vae.dtype
         
     | 
| 537 | 
         
            +
                    self.vae.to(dtype=torch.float32)
         
     | 
| 538 | 
         
            +
                    use_torch_2_0_or_xformers = isinstance(
         
     | 
| 539 | 
         
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         
     | 
| 540 | 
         
            +
                        (
         
     | 
| 541 | 
         
            +
                            AttnProcessor2_0,
         
     | 
| 542 | 
         
            +
                            XFormersAttnProcessor,
         
     | 
| 543 | 
         
            +
                            LoRAXFormersAttnProcessor,
         
     | 
| 544 | 
         
            +
                            LoRAAttnProcessor2_0,
         
     | 
| 545 | 
         
            +
                        ),
         
     | 
| 546 | 
         
            +
                    )
         
     | 
| 547 | 
         
            +
                    # if xformers or torch_2_0 is used attention block does not need
         
     | 
| 548 | 
         
            +
                    # to be in float32 which can save lots of memory
         
     | 
| 549 | 
         
            +
                    if use_torch_2_0_or_xformers:
         
     | 
| 550 | 
         
            +
                        self.vae.post_quant_conv.to(dtype)
         
     | 
| 551 | 
         
            +
                        self.vae.decoder.conv_in.to(dtype)
         
     | 
| 552 | 
         
            +
                        self.vae.decoder.mid_block.to(dtype)
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                @torch.no_grad()
         
     | 
| 555 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 556 | 
         
            +
                def __call__(
         
     | 
| 557 | 
         
            +
                    self,
         
     | 
| 558 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 559 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 560 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 561 | 
         
            +
                    num_inference_steps: int = 50,
         
     | 
| 562 | 
         
            +
                    denoising_end: Optional[float] = None,
         
     | 
| 563 | 
         
            +
                    guidance_scale: float = 5.0,
         
     | 
| 564 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 565 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 566 | 
         
            +
                    eta: float = 0.0,
         
     | 
| 567 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 568 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 569 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 570 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 571 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 572 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 573 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 574 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 575 | 
         
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         
     | 
| 576 | 
         
            +
                    callback_steps: int = 1,
         
     | 
| 577 | 
         
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 578 | 
         
            +
                    guidance_rescale: float = 0.0,
         
     | 
| 579 | 
         
            +
                    original_size: Optional[Tuple[int, int]] = None,
         
     | 
| 580 | 
         
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 581 | 
         
            +
                    target_size: Optional[Tuple[int, int]] = None,
         
     | 
| 582 | 
         
            +
                    use_dynamic_threshold: Optional[bool] = False,
         
     | 
| 583 | 
         
            +
                ):
         
     | 
| 584 | 
         
            +
                    r"""
         
     | 
| 585 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                    Args:
         
     | 
| 588 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 589 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 590 | 
         
            +
                            instead.
         
     | 
| 591 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 592 | 
         
            +
                            The height in pixels of the generated image.
         
     | 
| 593 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 594 | 
         
            +
                            The width in pixels of the generated image.
         
     | 
| 595 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 596 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 597 | 
         
            +
                            expense of slower inference.
         
     | 
| 598 | 
         
            +
                        denoising_end (`float`, *optional*):
         
     | 
| 599 | 
         
            +
                            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
         
     | 
| 600 | 
         
            +
                            completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
         
     | 
| 601 | 
         
            +
                            0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
         
     | 
| 602 | 
         
            +
                            Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
         
     | 
| 603 | 
         
            +
                            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
         
     | 
| 604 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 7.5):
         
     | 
| 605 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 606 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 607 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 608 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 609 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 610 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 611 | 
         
            +
                            less than `1`).
         
     | 
| 612 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 613 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 614 | 
         
            +
                        eta (`float`, *optional*, defaults to 0.0):
         
     | 
| 615 | 
         
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         
     | 
| 616 | 
         
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         
     | 
| 617 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 618 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 619 | 
         
            +
                            to make generation deterministic.
         
     | 
| 620 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 621 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 622 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 623 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 624 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 625 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 626 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 627 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 628 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 629 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 630 | 
         
            +
                            argument.
         
     | 
| 631 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 632 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 633 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 634 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 635 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 636 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 637 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 638 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 639 | 
         
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
         
     | 
| 640 | 
         
            +
                        callback (`Callable`, *optional*):
         
     | 
| 641 | 
         
            +
                            A function that will be called every `callback_steps` steps during inference. The function will be
         
     | 
| 642 | 
         
            +
                        callback_steps (`int`, *optional*, defaults to 1):
         
     | 
| 643 | 
         
            +
                            The frequency at which the `callback` function will be called. If not specified, the callback will be
         
     | 
| 644 | 
         
            +
                            called at every step.
         
     | 
| 645 | 
         
            +
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 646 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 647 | 
         
            +
                            `self.processor` in
         
     | 
| 648 | 
         
            +
                            [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
         
     | 
| 649 | 
         
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.7):
         
     | 
| 650 | 
         
            +
                            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
         
     | 
| 651 | 
         
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
         
     | 
| 652 | 
         
            +
                            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
         
     | 
| 653 | 
         
            +
                            Guidance rescale factor should fix overexposure when using zero terminal SNR.
         
     | 
| 654 | 
         
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 655 | 
         
            +
                            TODO
         
     | 
| 656 | 
         
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         
     | 
| 657 | 
         
            +
                            TODO
         
     | 
| 658 | 
         
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 659 | 
         
            +
                            TODO
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    Examples:
         
     | 
| 662 | 
         
            +
             
     | 
| 663 | 
         
            +
                    Returns:
         
     | 
| 664 | 
         
            +
                        [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
         
     | 
| 665 | 
         
            +
                        [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         
     | 
| 666 | 
         
            +
                        `tuple. When returning a tuple, the first element is a list with the generated images, and the second
         
     | 
| 667 | 
         
            +
                        element is a list of `bool`s denoting whether the corresponding generated image likely represents
         
     | 
| 668 | 
         
            +
                        "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
         
     | 
| 669 | 
         
            +
                    """
         
     | 
| 670 | 
         
            +
                    # 0. Default height and width to unet
         
     | 
| 671 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 672 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                    original_size = original_size or (height, width)
         
     | 
| 675 | 
         
            +
                    target_size = target_size or (height, width)
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 678 | 
         
            +
                    self.check_inputs(
         
     | 
| 679 | 
         
            +
                        prompt,
         
     | 
| 680 | 
         
            +
                        height,
         
     | 
| 681 | 
         
            +
                        width,
         
     | 
| 682 | 
         
            +
                        callback_steps,
         
     | 
| 683 | 
         
            +
                        negative_prompt,
         
     | 
| 684 | 
         
            +
                        prompt_embeds,
         
     | 
| 685 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 686 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 687 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 688 | 
         
            +
                    )
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 691 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 692 | 
         
            +
                        batch_size = 1
         
     | 
| 693 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 694 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 695 | 
         
            +
                    else:
         
     | 
| 696 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 697 | 
         
            +
             
     | 
| 698 | 
         
            +
                    device = self._execution_device
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 701 | 
         
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 702 | 
         
            +
                    # corresponds to doing no classifier free guidance.
         
     | 
| 703 | 
         
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    # 3. Encode input prompt
         
     | 
| 706 | 
         
            +
                    text_encoder_lora_scale = (
         
     | 
| 707 | 
         
            +
                        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
         
     | 
| 708 | 
         
            +
                    )
         
     | 
| 709 | 
         
            +
                    (
         
     | 
| 710 | 
         
            +
                        prompt_embeds,
         
     | 
| 711 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 712 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 713 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 714 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 715 | 
         
            +
                        prompt,
         
     | 
| 716 | 
         
            +
                        device,
         
     | 
| 717 | 
         
            +
                        num_images_per_prompt,
         
     | 
| 718 | 
         
            +
                        do_classifier_free_guidance,
         
     | 
| 719 | 
         
            +
                        negative_prompt,
         
     | 
| 720 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 721 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 722 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 723 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 724 | 
         
            +
                        lora_scale=text_encoder_lora_scale,
         
     | 
| 725 | 
         
            +
                    )
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    # 4. Prepare timesteps
         
     | 
| 728 | 
         
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                    timesteps = self.scheduler.timesteps
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                    # 5. Prepare latent variables
         
     | 
| 733 | 
         
            +
                    num_channels_latents = self.unet.config.in_channels
         
     | 
| 734 | 
         
            +
                    latents = self.prepare_latents(
         
     | 
| 735 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 736 | 
         
            +
                        num_channels_latents,
         
     | 
| 737 | 
         
            +
                        height,
         
     | 
| 738 | 
         
            +
                        width,
         
     | 
| 739 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 740 | 
         
            +
                        device,
         
     | 
| 741 | 
         
            +
                        generator,
         
     | 
| 742 | 
         
            +
                        latents,
         
     | 
| 743 | 
         
            +
                    )
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         
     | 
| 746 | 
         
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                    # 7. Prepare added time ids & embeddings
         
     | 
| 749 | 
         
            +
                    add_text_embeds = pooled_prompt_embeds
         
     | 
| 750 | 
         
            +
                    add_time_ids = self._get_add_time_ids(
         
     | 
| 751 | 
         
            +
                        original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
         
     | 
| 752 | 
         
            +
                    )
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 755 | 
         
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         
     | 
| 756 | 
         
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         
     | 
| 757 | 
         
            +
                        add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 760 | 
         
            +
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 761 | 
         
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 762 | 
         
            +
             
     | 
| 763 | 
         
            +
                    # 8. Denoising loop
         
     | 
| 764 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                    # 7.1 Apply denoising_end
         
     | 
| 767 | 
         
            +
                    if denoising_end is not None:
         
     | 
| 768 | 
         
            +
                        num_inference_steps = int(round(denoising_end * num_inference_steps))
         
     | 
| 769 | 
         
            +
                        timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 772 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 773 | 
         
            +
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 774 | 
         
            +
                            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                            # predict the noise residual
         
     | 
| 779 | 
         
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 780 | 
         
            +
                            noise_pred = self.unet(
         
     | 
| 781 | 
         
            +
                                latent_model_input,
         
     | 
| 782 | 
         
            +
                                t,
         
     | 
| 783 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 784 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 785 | 
         
            +
                                added_cond_kwargs=added_cond_kwargs,
         
     | 
| 786 | 
         
            +
                                return_dict=False,
         
     | 
| 787 | 
         
            +
                            )[0]
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                            # perform guidance
         
     | 
| 790 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 791 | 
         
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         
     | 
| 792 | 
         
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         
     | 
| 793 | 
         
            +
                                if use_dynamic_threshold:
         
     | 
| 794 | 
         
            +
                                    DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
         
     | 
| 795 | 
         
            +
                                    noise_pred = DynamicThresh.dynthresh(noise_pred_text,
         
     | 
| 796 | 
         
            +
                                        noise_pred_uncond,
         
     | 
| 797 | 
         
            +
                                        guidance_scale,
         
     | 
| 798 | 
         
            +
                                        None)
         
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
                            if do_classifier_free_guidance and guidance_rescale > 0.0:
         
     | 
| 801 | 
         
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         
     | 
| 802 | 
         
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 805 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                            # call the callback, if provided
         
     | 
| 808 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 809 | 
         
            +
                                progress_bar.update()
         
     | 
| 810 | 
         
            +
                                if callback is not None and i % callback_steps == 0:
         
     | 
| 811 | 
         
            +
                                    callback(i, t, latents)
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                    # make sureo the VAE is in float32 mode, as it overflows in float16
         
     | 
| 814 | 
         
            +
                    # torch.cuda.empty_cache()
         
     | 
| 815 | 
         
            +
                    if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
         
     | 
| 816 | 
         
            +
                        self.upcast_vae()
         
     | 
| 817 | 
         
            +
                        latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
             
     | 
| 820 | 
         
            +
                    if not output_type == "latent":
         
     | 
| 821 | 
         
            +
                        latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 822 | 
         
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         
     | 
| 823 | 
         
            +
                    else:
         
     | 
| 824 | 
         
            +
                        image = latents
         
     | 
| 825 | 
         
            +
                        return StableDiffusionXLPipelineOutput(images=image)
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                    # image = self.watermark.apply_watermark(image)
         
     | 
| 828 | 
         
            +
                    image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                    # Offload last model to CPU
         
     | 
| 831 | 
         
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         
     | 
| 832 | 
         
            +
                        self.final_offload_hook.offload()
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    if not return_dict:
         
     | 
| 835 | 
         
            +
                        return (image,)
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 841 | 
         
            +
                pass
         
     | 
    	
        kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.py
    ADDED
    
    | 
         @@ -0,0 +1,948 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
            import sys
         
     | 
| 15 | 
         
            +
            import os
         
     | 
| 16 | 
         
            +
            sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
         
     | 
| 17 | 
         
            +
            from kolors.models.modeling_chatglm import ChatGLMModel
         
     | 
| 18 | 
         
            +
            from kolors.models.tokenization_chatglm import ChatGLMTokenizer
         
     | 
| 19 | 
         
            +
            import inspect
         
     | 
| 20 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         
     | 
| 21 | 
         
            +
            import torch
         
     | 
| 22 | 
         
            +
            from transformers import (
         
     | 
| 23 | 
         
            +
                CLIPImageProcessor,
         
     | 
| 24 | 
         
            +
                CLIPTextModel,
         
     | 
| 25 | 
         
            +
                CLIPTextModelWithProjection,
         
     | 
| 26 | 
         
            +
                CLIPTokenizer,
         
     | 
| 27 | 
         
            +
                CLIPVisionModelWithProjection,
         
     | 
| 28 | 
         
            +
            )
         
     | 
| 29 | 
         
            +
            from transformers import XLMRobertaModel, ChineseCLIPTextModel
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
         
     | 
| 32 | 
         
            +
            from diffusers.loaders import (
         
     | 
| 33 | 
         
            +
                FromSingleFileMixin, 
         
     | 
| 34 | 
         
            +
                IPAdapterMixin,
         
     | 
| 35 | 
         
            +
                LoraLoaderMixin,
         
     | 
| 36 | 
         
            +
                TextualInversionLoaderMixin
         
     | 
| 37 | 
         
            +
            )
         
     | 
| 38 | 
         
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel,ImageProjection
         
     | 
| 39 | 
         
            +
            from diffusers.models.attention_processor import (
         
     | 
| 40 | 
         
            +
                AttnProcessor2_0,
         
     | 
| 41 | 
         
            +
                LoRAAttnProcessor2_0,
         
     | 
| 42 | 
         
            +
                LoRAXFormersAttnProcessor,
         
     | 
| 43 | 
         
            +
                XFormersAttnProcessor,
         
     | 
| 44 | 
         
            +
            )
         
     | 
| 45 | 
         
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         
     | 
| 46 | 
         
            +
            from diffusers.utils import (
         
     | 
| 47 | 
         
            +
                is_accelerate_available,
         
     | 
| 48 | 
         
            +
                is_accelerate_version,
         
     | 
| 49 | 
         
            +
                logging,
         
     | 
| 50 | 
         
            +
                replace_example_docstring,
         
     | 
| 51 | 
         
            +
            )
         
     | 
| 52 | 
         
            +
            try:
         
     | 
| 53 | 
         
            +
                from diffusers.utils import randn_tensor
         
     | 
| 54 | 
         
            +
            except:
         
     | 
| 55 | 
         
            +
                from diffusers.utils.torch_utils import randn_tensor
         
     | 
| 56 | 
         
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         
     | 
| 57 | 
         
            +
            from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 64 | 
         
            +
                Examples:
         
     | 
| 65 | 
         
            +
                    ```py
         
     | 
| 66 | 
         
            +
                    >>> import torch
         
     | 
| 67 | 
         
            +
                    >>> from diffusers import StableDiffusionXLPipeline
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    >>> pipe = StableDiffusionXLPipeline.from_pretrained(
         
     | 
| 70 | 
         
            +
                    ...     "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
         
     | 
| 71 | 
         
            +
                    ... )
         
     | 
| 72 | 
         
            +
                    >>> pipe = pipe.to("cuda")
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    >>> prompt = "a photo of an astronaut riding a horse on mars"
         
     | 
| 75 | 
         
            +
                    >>> image = pipe(prompt).images[0]
         
     | 
| 76 | 
         
            +
                    ```
         
     | 
| 77 | 
         
            +
            """
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
         
     | 
| 81 | 
         
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         
     | 
| 82 | 
         
            +
                """
         
     | 
| 83 | 
         
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         
     | 
| 84 | 
         
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         
     | 
| 85 | 
         
            +
                """
         
     | 
| 86 | 
         
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         
     | 
| 87 | 
         
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         
     | 
| 88 | 
         
            +
                # rescale the results from guidance (fixes overexposure)
         
     | 
| 89 | 
         
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         
     | 
| 90 | 
         
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         
     | 
| 91 | 
         
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         
     | 
| 92 | 
         
            +
                return noise_cfg
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            class StableDiffusionXLPipeline(DiffusionPipeline,  FromSingleFileMixin, LoraLoaderMixin, IPAdapterMixin,):
         
     | 
| 96 | 
         
            +
                r"""
         
     | 
| 97 | 
         
            +
                Pipeline for text-to-image generation using Stable Diffusion XL.
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         
     | 
| 100 | 
         
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                In addition the pipeline inherits the following loading methods:
         
     | 
| 103 | 
         
            +
                    - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
         
     | 
| 104 | 
         
            +
                    - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
         
     | 
| 105 | 
         
            +
                    - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                as well as the following saving methods:
         
     | 
| 108 | 
         
            +
                    - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                Args:
         
     | 
| 111 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 112 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 113 | 
         
            +
                    text_encoder ([`CLIPTextModel`]):
         
     | 
| 114 | 
         
            +
                        Frozen text-encoder. Stable Diffusion XL uses the text portion of
         
     | 
| 115 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         
     | 
| 116 | 
         
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 119 | 
         
            +
                        Tokenizer of class
         
     | 
| 120 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         
     | 
| 123 | 
         
            +
                    scheduler ([`SchedulerMixin`]):
         
     | 
| 124 | 
         
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         
     | 
| 125 | 
         
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         
     | 
| 126 | 
         
            +
                """
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                def __init__(
         
     | 
| 129 | 
         
            +
                    self,
         
     | 
| 130 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 131 | 
         
            +
                    text_encoder: ChatGLMModel,
         
     | 
| 132 | 
         
            +
                    tokenizer: ChatGLMTokenizer,
         
     | 
| 133 | 
         
            +
                    unet: UNet2DConditionModel,
         
     | 
| 134 | 
         
            +
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 135 | 
         
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         
     | 
| 136 | 
         
            +
                    feature_extractor: CLIPImageProcessor = None,
         
     | 
| 137 | 
         
            +
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 138 | 
         
            +
                ):
         
     | 
| 139 | 
         
            +
                    super().__init__()
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    self.register_modules(
         
     | 
| 142 | 
         
            +
                        vae=vae,
         
     | 
| 143 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 144 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 145 | 
         
            +
                        unet=unet,
         
     | 
| 146 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 147 | 
         
            +
                        image_encoder=image_encoder,
         
     | 
| 148 | 
         
            +
                        feature_extractor=feature_extractor,
         
     | 
| 149 | 
         
            +
                    )
         
     | 
| 150 | 
         
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 151 | 
         
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         
     | 
| 152 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 153 | 
         
            +
                    self.default_sample_size = self.unet.config.sample_size
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    # self.watermark = StableDiffusionXLWatermarker()
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
         
     | 
| 158 | 
         
            +
                def enable_vae_slicing(self):
         
     | 
| 159 | 
         
            +
                    r"""
         
     | 
| 160 | 
         
            +
                    Enable sliced VAE decoding.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
         
     | 
| 163 | 
         
            +
                    steps. This is useful to save some memory and allow larger batch sizes.
         
     | 
| 164 | 
         
            +
                    """
         
     | 
| 165 | 
         
            +
                    self.vae.enable_slicing()
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
         
     | 
| 168 | 
         
            +
                def disable_vae_slicing(self):
         
     | 
| 169 | 
         
            +
                    r"""
         
     | 
| 170 | 
         
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
         
     | 
| 171 | 
         
            +
                    computing decoding in one step.
         
     | 
| 172 | 
         
            +
                    """
         
     | 
| 173 | 
         
            +
                    self.vae.disable_slicing()
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
         
     | 
| 176 | 
         
            +
                def enable_vae_tiling(self):
         
     | 
| 177 | 
         
            +
                    r"""
         
     | 
| 178 | 
         
            +
                    Enable tiled VAE decoding.
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
         
     | 
| 181 | 
         
            +
                    several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
         
     | 
| 182 | 
         
            +
                    """
         
     | 
| 183 | 
         
            +
                    self.vae.enable_tiling()
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
         
     | 
| 186 | 
         
            +
                def disable_vae_tiling(self):
         
     | 
| 187 | 
         
            +
                    r"""
         
     | 
| 188 | 
         
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
         
     | 
| 189 | 
         
            +
                    computing decoding in one step.
         
     | 
| 190 | 
         
            +
                    """
         
     | 
| 191 | 
         
            +
                    self.vae.disable_tiling()
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                def enable_sequential_cpu_offload(self, gpu_id=0):
         
     | 
| 194 | 
         
            +
                    r"""
         
     | 
| 195 | 
         
            +
                    Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
         
     | 
| 196 | 
         
            +
                    text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
         
     | 
| 197 | 
         
            +
                    `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
         
     | 
| 198 | 
         
            +
                    Note that offloading happens on a submodule basis. Memory savings are higher than with
         
     | 
| 199 | 
         
            +
                    `enable_model_cpu_offload`, but performance is lower.
         
     | 
| 200 | 
         
            +
                    """
         
     | 
| 201 | 
         
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
         
     | 
| 202 | 
         
            +
                        from accelerate import cpu_offload
         
     | 
| 203 | 
         
            +
                    else:
         
     | 
| 204 | 
         
            +
                        raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                    device = torch.device(f"cuda:{gpu_id}")
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                    if self.device.type != "cpu":
         
     | 
| 209 | 
         
            +
                        self.to("cpu", silence_dtype_warnings=True)
         
     | 
| 210 | 
         
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
         
     | 
| 213 | 
         
            +
                        cpu_offload(cpu_offloaded_model, device)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                def enable_model_cpu_offload(self, gpu_id=0):
         
     | 
| 216 | 
         
            +
                    r"""
         
     | 
| 217 | 
         
            +
                    Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
         
     | 
| 218 | 
         
            +
                    to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
         
     | 
| 219 | 
         
            +
                    method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
         
     | 
| 220 | 
         
            +
                    `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
         
     | 
| 221 | 
         
            +
                    """
         
     | 
| 222 | 
         
            +
                    if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
         
     | 
| 223 | 
         
            +
                        from accelerate import cpu_offload_with_hook
         
     | 
| 224 | 
         
            +
                    else:
         
     | 
| 225 | 
         
            +
                        raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                    device = torch.device(f"cuda:{gpu_id}")
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    if self.device.type != "cpu":
         
     | 
| 230 | 
         
            +
                        self.to("cpu", silence_dtype_warnings=True)
         
     | 
| 231 | 
         
            +
                        torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    model_sequence = (
         
     | 
| 234 | 
         
            +
                        [self.text_encoder, self.image_encoder]
         
     | 
| 235 | 
         
            +
                    )
         
     | 
| 236 | 
         
            +
                    model_sequence.extend([self.unet, self.vae])
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    hook = None
         
     | 
| 239 | 
         
            +
                    for cpu_offloaded_model in model_sequence:
         
     | 
| 240 | 
         
            +
                        _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                    # We'll offload the last model manually.
         
     | 
| 243 | 
         
            +
                    self.final_offload_hook = hook
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                @property
         
     | 
| 246 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
         
     | 
| 247 | 
         
            +
                def _execution_device(self):
         
     | 
| 248 | 
         
            +
                    r"""
         
     | 
| 249 | 
         
            +
                    Returns the device on which the pipeline's models will be executed. After calling
         
     | 
| 250 | 
         
            +
                    `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
         
     | 
| 251 | 
         
            +
                    hooks.
         
     | 
| 252 | 
         
            +
                    """
         
     | 
| 253 | 
         
            +
                    if not hasattr(self.unet, "_hf_hook"):
         
     | 
| 254 | 
         
            +
                        return self.device
         
     | 
| 255 | 
         
            +
                    for module in self.unet.modules():
         
     | 
| 256 | 
         
            +
                        if (
         
     | 
| 257 | 
         
            +
                            hasattr(module, "_hf_hook")
         
     | 
| 258 | 
         
            +
                            and hasattr(module._hf_hook, "execution_device")
         
     | 
| 259 | 
         
            +
                            and module._hf_hook.execution_device is not None
         
     | 
| 260 | 
         
            +
                        ):
         
     | 
| 261 | 
         
            +
                            return torch.device(module._hf_hook.execution_device)
         
     | 
| 262 | 
         
            +
                    return self.device
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                def encode_prompt(
         
     | 
| 265 | 
         
            +
                    self,
         
     | 
| 266 | 
         
            +
                    prompt,
         
     | 
| 267 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 268 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 269 | 
         
            +
                    do_classifier_free_guidance: bool = True,
         
     | 
| 270 | 
         
            +
                    negative_prompt=None,
         
     | 
| 271 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 272 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 273 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 274 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 275 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 276 | 
         
            +
                ):
         
     | 
| 277 | 
         
            +
                    r"""
         
     | 
| 278 | 
         
            +
                    Encodes the prompt into text encoder hidden states.
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                    Args:
         
     | 
| 281 | 
         
            +
                         prompt (`str` or `List[str]`, *optional*):
         
     | 
| 282 | 
         
            +
                            prompt to be encoded
         
     | 
| 283 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 284 | 
         
            +
                            torch device
         
     | 
| 285 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 286 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 287 | 
         
            +
                        do_classifier_free_guidance (`bool`):
         
     | 
| 288 | 
         
            +
                            whether to use classifier free guidance or not
         
     | 
| 289 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 290 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 291 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 292 | 
         
            +
                            less than `1`).
         
     | 
| 293 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 294 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 295 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 296 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 297 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 298 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 299 | 
         
            +
                            argument.
         
     | 
| 300 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 301 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 302 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 303 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 304 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 305 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 306 | 
         
            +
                            input argument.
         
     | 
| 307 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 308 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 309 | 
         
            +
                    """
         
     | 
| 310 | 
         
            +
                    # from IPython import embed; embed(); exit()
         
     | 
| 311 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 314 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 315 | 
         
            +
                    if lora_scale is not None and isinstance(self, LoraLoaderMixin):
         
     | 
| 316 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 319 | 
         
            +
                        batch_size = 1
         
     | 
| 320 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 321 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 322 | 
         
            +
                    else:
         
     | 
| 323 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    # Define tokenizers and text encoders
         
     | 
| 326 | 
         
            +
                    tokenizers = [self.tokenizer]
         
     | 
| 327 | 
         
            +
                    text_encoders = [self.text_encoder]
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 330 | 
         
            +
                        # textual inversion: procecss multi-vector tokens if necessary
         
     | 
| 331 | 
         
            +
                        prompt_embeds_list = []
         
     | 
| 332 | 
         
            +
                        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
         
     | 
| 333 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 334 | 
         
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                            text_inputs = tokenizer(
         
     | 
| 337 | 
         
            +
                                prompt,
         
     | 
| 338 | 
         
            +
                                padding="max_length",
         
     | 
| 339 | 
         
            +
                                max_length=256,
         
     | 
| 340 | 
         
            +
                                truncation=True,
         
     | 
| 341 | 
         
            +
                                return_tensors="pt",
         
     | 
| 342 | 
         
            +
                            ).to('cuda')
         
     | 
| 343 | 
         
            +
                            output = text_encoder(
         
     | 
| 344 | 
         
            +
                                    input_ids=text_inputs['input_ids'] ,
         
     | 
| 345 | 
         
            +
                                    attention_mask=text_inputs['attention_mask'],
         
     | 
| 346 | 
         
            +
                                    position_ids=text_inputs['position_ids'],
         
     | 
| 347 | 
         
            +
                                    output_hidden_states=True)
         
     | 
| 348 | 
         
            +
                            prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
         
     | 
| 349 | 
         
            +
                            pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
         
     | 
| 350 | 
         
            +
                            bs_embed, seq_len, _ = prompt_embeds.shape
         
     | 
| 351 | 
         
            +
                            prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 352 | 
         
            +
                            prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                            prompt_embeds_list.append(prompt_embeds)
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                        # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         
     | 
| 357 | 
         
            +
                        prompt_embeds = prompt_embeds_list[0]
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                    # get unconditional embeddings for classifier free guidance
         
     | 
| 360 | 
         
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         
     | 
| 361 | 
         
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         
     | 
| 362 | 
         
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         
     | 
| 363 | 
         
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         
     | 
| 364 | 
         
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         
     | 
| 365 | 
         
            +
                        # negative_prompt = negative_prompt or ""
         
     | 
| 366 | 
         
            +
                        uncond_tokens: List[str]
         
     | 
| 367 | 
         
            +
                        if negative_prompt is None:
         
     | 
| 368 | 
         
            +
                            uncond_tokens = [""] * batch_size
         
     | 
| 369 | 
         
            +
                        elif prompt is not None and type(prompt) is not type(negative_prompt):
         
     | 
| 370 | 
         
            +
                            raise TypeError(
         
     | 
| 371 | 
         
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         
     | 
| 372 | 
         
            +
                                f" {type(prompt)}."
         
     | 
| 373 | 
         
            +
                            )
         
     | 
| 374 | 
         
            +
                        elif isinstance(negative_prompt, str):
         
     | 
| 375 | 
         
            +
                            uncond_tokens = [negative_prompt]
         
     | 
| 376 | 
         
            +
                        elif batch_size != len(negative_prompt):
         
     | 
| 377 | 
         
            +
                            raise ValueError(
         
     | 
| 378 | 
         
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         
     | 
| 379 | 
         
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         
     | 
| 380 | 
         
            +
                                " the batch size of `prompt`."
         
     | 
| 381 | 
         
            +
                            )
         
     | 
| 382 | 
         
            +
                        else:
         
     | 
| 383 | 
         
            +
                            uncond_tokens = negative_prompt
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                        negative_prompt_embeds_list = []
         
     | 
| 386 | 
         
            +
                        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
         
     | 
| 387 | 
         
            +
                            # textual inversion: procecss multi-vector tokens if necessary
         
     | 
| 388 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 389 | 
         
            +
                                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                            max_length = prompt_embeds.shape[1]
         
     | 
| 392 | 
         
            +
                            uncond_input = tokenizer(
         
     | 
| 393 | 
         
            +
                                uncond_tokens,
         
     | 
| 394 | 
         
            +
                                padding="max_length",
         
     | 
| 395 | 
         
            +
                                max_length=max_length,
         
     | 
| 396 | 
         
            +
                                truncation=True,
         
     | 
| 397 | 
         
            +
                                return_tensors="pt",
         
     | 
| 398 | 
         
            +
                            ).to('cuda')
         
     | 
| 399 | 
         
            +
                            output = text_encoder(
         
     | 
| 400 | 
         
            +
                                    input_ids=uncond_input['input_ids'] ,
         
     | 
| 401 | 
         
            +
                                    attention_mask=uncond_input['attention_mask'],
         
     | 
| 402 | 
         
            +
                                    position_ids=uncond_input['position_ids'],
         
     | 
| 403 | 
         
            +
                                    output_hidden_states=True)
         
     | 
| 404 | 
         
            +
                            negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
         
     | 
| 405 | 
         
            +
                            negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 408 | 
         
            +
                                # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         
     | 
| 409 | 
         
            +
                                seq_len = negative_prompt_embeds.shape[1]
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 414 | 
         
            +
                                negative_prompt_embeds = negative_prompt_embeds.view(
         
     | 
| 415 | 
         
            +
                                    batch_size * num_images_per_prompt, seq_len, -1
         
     | 
| 416 | 
         
            +
                                )
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                                # For classifier free guidance, we need to do two forward passes.
         
     | 
| 419 | 
         
            +
                                # Here we concatenate the unconditional and text embeddings into a single batch
         
     | 
| 420 | 
         
            +
                                # to avoid doing two forward passes
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                        # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         
     | 
| 425 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds_list[0]
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    bs_embed = pooled_prompt_embeds.shape[0]
         
     | 
| 428 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 429 | 
         
            +
                        bs_embed * num_images_per_prompt, -1
         
     | 
| 430 | 
         
            +
                    )
         
     | 
| 431 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 432 | 
         
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 433 | 
         
            +
                            bs_embed * num_images_per_prompt, -1
         
     | 
| 434 | 
         
            +
                        )
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
         
     | 
| 440 | 
         
            +
                def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
         
     | 
| 441 | 
         
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                    if not isinstance(image, torch.Tensor):
         
     | 
| 444 | 
         
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                    image = image.to(device=device, dtype=dtype)
         
     | 
| 447 | 
         
            +
                    if output_hidden_states:
         
     | 
| 448 | 
         
            +
                        image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         
     | 
| 449 | 
         
            +
                        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
         
     | 
| 450 | 
         
            +
                        uncond_image_enc_hidden_states = self.image_encoder(
         
     | 
| 451 | 
         
            +
                            torch.zeros_like(image), output_hidden_states=True
         
     | 
| 452 | 
         
            +
                        ).hidden_states[-2]
         
     | 
| 453 | 
         
            +
                        uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
         
     | 
| 454 | 
         
            +
                            num_images_per_prompt, dim=0
         
     | 
| 455 | 
         
            +
                        )
         
     | 
| 456 | 
         
            +
                        return image_enc_hidden_states, uncond_image_enc_hidden_states
         
     | 
| 457 | 
         
            +
                    else:
         
     | 
| 458 | 
         
            +
                        image_embeds = self.image_encoder(image).image_embeds
         
     | 
| 459 | 
         
            +
                        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         
     | 
| 460 | 
         
            +
                        uncond_image_embeds = torch.zeros_like(image_embeds)
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                        return image_embeds, uncond_image_embeds
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
         
     | 
| 465 | 
         
            +
                def prepare_ip_adapter_image_embeds(
         
     | 
| 466 | 
         
            +
                    self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
         
     | 
| 467 | 
         
            +
                ):
         
     | 
| 468 | 
         
            +
                    image_embeds = []
         
     | 
| 469 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 470 | 
         
            +
                        negative_image_embeds = []
         
     | 
| 471 | 
         
            +
                    if ip_adapter_image_embeds is None:
         
     | 
| 472 | 
         
            +
                        if not isinstance(ip_adapter_image, list):
         
     | 
| 473 | 
         
            +
                            ip_adapter_image = [ip_adapter_image]
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                        if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
         
     | 
| 476 | 
         
            +
                            raise ValueError(
         
     | 
| 477 | 
         
            +
                                f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
         
     | 
| 478 | 
         
            +
                            )
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                        for single_ip_adapter_image, image_proj_layer in zip(
         
     | 
| 481 | 
         
            +
                            ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
         
     | 
| 482 | 
         
            +
                        ):
         
     | 
| 483 | 
         
            +
                            output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
         
     | 
| 484 | 
         
            +
                            single_image_embeds, single_negative_image_embeds = self.encode_image(
         
     | 
| 485 | 
         
            +
                                single_ip_adapter_image, device, 1, output_hidden_state
         
     | 
| 486 | 
         
            +
                            )
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                            image_embeds.append(single_image_embeds[None, :])
         
     | 
| 489 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 490 | 
         
            +
                                negative_image_embeds.append(single_negative_image_embeds[None, :])
         
     | 
| 491 | 
         
            +
                    else:
         
     | 
| 492 | 
         
            +
                        for single_image_embeds in ip_adapter_image_embeds:
         
     | 
| 493 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 494 | 
         
            +
                                single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
         
     | 
| 495 | 
         
            +
                                negative_image_embeds.append(single_negative_image_embeds)
         
     | 
| 496 | 
         
            +
                            image_embeds.append(single_image_embeds)
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                    ip_adapter_image_embeds = []
         
     | 
| 499 | 
         
            +
                    for i, single_image_embeds in enumerate(image_embeds):
         
     | 
| 500 | 
         
            +
                        single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
         
     | 
| 501 | 
         
            +
                        if do_classifier_free_guidance:
         
     | 
| 502 | 
         
            +
                            single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
         
     | 
| 503 | 
         
            +
                            single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                        single_image_embeds = single_image_embeds.to(device=device)
         
     | 
| 506 | 
         
            +
                        ip_adapter_image_embeds.append(single_image_embeds)
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                    return ip_adapter_image_embeds
         
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         
     | 
| 512 | 
         
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         
     | 
| 513 | 
         
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         
     | 
| 514 | 
         
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         
     | 
| 515 | 
         
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         
     | 
| 516 | 
         
            +
                    # and should be between [0, 1]
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 519 | 
         
            +
                    extra_step_kwargs = {}
         
     | 
| 520 | 
         
            +
                    if accepts_eta:
         
     | 
| 521 | 
         
            +
                        extra_step_kwargs["eta"] = eta
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                    # check if the scheduler accepts generator
         
     | 
| 524 | 
         
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 525 | 
         
            +
                    if accepts_generator:
         
     | 
| 526 | 
         
            +
                        extra_step_kwargs["generator"] = generator
         
     | 
| 527 | 
         
            +
                    return extra_step_kwargs
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                def check_inputs(
         
     | 
| 530 | 
         
            +
                    self,
         
     | 
| 531 | 
         
            +
                    prompt,
         
     | 
| 532 | 
         
            +
                    height,
         
     | 
| 533 | 
         
            +
                    width,
         
     | 
| 534 | 
         
            +
                    callback_steps,
         
     | 
| 535 | 
         
            +
                    negative_prompt=None,
         
     | 
| 536 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 537 | 
         
            +
                    negative_prompt_embeds=None,
         
     | 
| 538 | 
         
            +
                    pooled_prompt_embeds=None,
         
     | 
| 539 | 
         
            +
                    negative_pooled_prompt_embeds=None,
         
     | 
| 540 | 
         
            +
                ):
         
     | 
| 541 | 
         
            +
                    if height % 8 != 0 or width % 8 != 0:
         
     | 
| 542 | 
         
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                    if (callback_steps is None) or (
         
     | 
| 545 | 
         
            +
                        callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
         
     | 
| 546 | 
         
            +
                    ):
         
     | 
| 547 | 
         
            +
                        raise ValueError(
         
     | 
| 548 | 
         
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         
     | 
| 549 | 
         
            +
                            f" {type(callback_steps)}."
         
     | 
| 550 | 
         
            +
                        )
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 553 | 
         
            +
                        raise ValueError(
         
     | 
| 554 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 555 | 
         
            +
                            " only forward one of the two."
         
     | 
| 556 | 
         
            +
                        )
         
     | 
| 557 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 558 | 
         
            +
                        raise ValueError(
         
     | 
| 559 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 560 | 
         
            +
                        )
         
     | 
| 561 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 562 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         
     | 
| 565 | 
         
            +
                        raise ValueError(
         
     | 
| 566 | 
         
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         
     | 
| 567 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 568 | 
         
            +
                        )
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         
     | 
| 571 | 
         
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         
     | 
| 572 | 
         
            +
                            raise ValueError(
         
     | 
| 573 | 
         
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         
     | 
| 574 | 
         
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         
     | 
| 575 | 
         
            +
                                f" {negative_prompt_embeds.shape}."
         
     | 
| 576 | 
         
            +
                            )
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         
     | 
| 579 | 
         
            +
                        raise ValueError(
         
     | 
| 580 | 
         
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         
     | 
| 581 | 
         
            +
                        )
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         
     | 
| 584 | 
         
            +
                        raise ValueError(
         
     | 
| 585 | 
         
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         
     | 
| 586 | 
         
            +
                        )
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         
     | 
| 589 | 
         
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         
     | 
| 590 | 
         
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         
     | 
| 591 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 592 | 
         
            +
                        raise ValueError(
         
     | 
| 593 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 594 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 595 | 
         
            +
                        )
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                    if latents is None:
         
     | 
| 598 | 
         
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         
     | 
| 599 | 
         
            +
                    else:
         
     | 
| 600 | 
         
            +
                        latents = latents.to(device)
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         
     | 
| 603 | 
         
            +
                    latents = latents * self.scheduler.init_noise_sigma
         
     | 
| 604 | 
         
            +
                    return latents
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
         
     | 
| 607 | 
         
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
                    passed_add_embed_dim = (
         
     | 
| 610 | 
         
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
         
     | 
| 611 | 
         
            +
                    )
         
     | 
| 612 | 
         
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         
     | 
| 615 | 
         
            +
                        raise ValueError(
         
     | 
| 616 | 
         
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         
     | 
| 617 | 
         
            +
                        )
         
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         
     | 
| 620 | 
         
            +
                    return add_time_ids
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
         
     | 
| 623 | 
         
            +
                def upcast_vae(self):
         
     | 
| 624 | 
         
            +
                    dtype = self.vae.dtype
         
     | 
| 625 | 
         
            +
                    self.vae.to(dtype=torch.float32)
         
     | 
| 626 | 
         
            +
                    use_torch_2_0_or_xformers = isinstance(
         
     | 
| 627 | 
         
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         
     | 
| 628 | 
         
            +
                        (
         
     | 
| 629 | 
         
            +
                            AttnProcessor2_0,
         
     | 
| 630 | 
         
            +
                            XFormersAttnProcessor,
         
     | 
| 631 | 
         
            +
                            LoRAXFormersAttnProcessor,
         
     | 
| 632 | 
         
            +
                            LoRAAttnProcessor2_0,
         
     | 
| 633 | 
         
            +
                        ),
         
     | 
| 634 | 
         
            +
                    )
         
     | 
| 635 | 
         
            +
                    # if xformers or torch_2_0 is used attention block does not need
         
     | 
| 636 | 
         
            +
                    # to be in float32 which can save lots of memory
         
     | 
| 637 | 
         
            +
                    if use_torch_2_0_or_xformers:
         
     | 
| 638 | 
         
            +
                        self.vae.post_quant_conv.to(dtype)
         
     | 
| 639 | 
         
            +
                        self.vae.decoder.conv_in.to(dtype)
         
     | 
| 640 | 
         
            +
                        self.vae.decoder.mid_block.to(dtype)
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                @torch.no_grad()
         
     | 
| 643 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 644 | 
         
            +
                def __call__(
         
     | 
| 645 | 
         
            +
                    self,
         
     | 
| 646 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 647 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 648 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 649 | 
         
            +
                    num_inference_steps: int = 50,
         
     | 
| 650 | 
         
            +
                    denoising_end: Optional[float] = None,
         
     | 
| 651 | 
         
            +
                    guidance_scale: float = 5.0,
         
     | 
| 652 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 653 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 654 | 
         
            +
                    eta: float = 0.0,
         
     | 
| 655 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 656 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 657 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 658 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 659 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 660 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         
     | 
| 663 | 
         
            +
                    ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
         
     | 
| 664 | 
         
            +
             
     | 
| 665 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 666 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 667 | 
         
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         
     | 
| 668 | 
         
            +
                    callback_steps: int = 1,
         
     | 
| 669 | 
         
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 670 | 
         
            +
                    guidance_rescale: float = 0.0,
         
     | 
| 671 | 
         
            +
                    original_size: Optional[Tuple[int, int]] = None,
         
     | 
| 672 | 
         
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 673 | 
         
            +
                    target_size: Optional[Tuple[int, int]] = None,
         
     | 
| 674 | 
         
            +
                    use_dynamic_threshold: Optional[bool] = False,
         
     | 
| 675 | 
         
            +
                ):
         
     | 
| 676 | 
         
            +
                    r"""
         
     | 
| 677 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
                    Args:
         
     | 
| 680 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 681 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 682 | 
         
            +
                            instead.
         
     | 
| 683 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 684 | 
         
            +
                            The height in pixels of the generated image.
         
     | 
| 685 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 686 | 
         
            +
                            The width in pixels of the generated image.
         
     | 
| 687 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 688 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 689 | 
         
            +
                            expense of slower inference.
         
     | 
| 690 | 
         
            +
                        denoising_end (`float`, *optional*):
         
     | 
| 691 | 
         
            +
                            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
         
     | 
| 692 | 
         
            +
                            completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
         
     | 
| 693 | 
         
            +
                            0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
         
     | 
| 694 | 
         
            +
                            Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
         
     | 
| 695 | 
         
            +
                            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
         
     | 
| 696 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 7.5):
         
     | 
| 697 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 698 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 699 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 700 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 701 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 702 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 703 | 
         
            +
                            less than `1`).
         
     | 
| 704 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 705 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 706 | 
         
            +
                        eta (`float`, *optional*, defaults to 0.0):
         
     | 
| 707 | 
         
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         
     | 
| 708 | 
         
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         
     | 
| 709 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 710 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 711 | 
         
            +
                            to make generation deterministic.
         
     | 
| 712 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 713 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 714 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 715 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 716 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 717 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 718 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 719 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 720 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 721 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 722 | 
         
            +
                            argument.
         
     | 
| 723 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 724 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 725 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 726 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 727 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 728 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 729 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 730 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 731 | 
         
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
         
     | 
| 732 | 
         
            +
                        callback (`Callable`, *optional*):
         
     | 
| 733 | 
         
            +
                            A function that will be called every `callback_steps` steps during inference. The function will be
         
     | 
| 734 | 
         
            +
                        callback_steps (`int`, *optional*, defaults to 1):
         
     | 
| 735 | 
         
            +
                            The frequency at which the `callback` function will be called. If not specified, the callback will be
         
     | 
| 736 | 
         
            +
                            called at every step.
         
     | 
| 737 | 
         
            +
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 738 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 739 | 
         
            +
                            `self.processor` in
         
     | 
| 740 | 
         
            +
                            [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
         
     | 
| 741 | 
         
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.7):
         
     | 
| 742 | 
         
            +
                            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
         
     | 
| 743 | 
         
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
         
     | 
| 744 | 
         
            +
                            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
         
     | 
| 745 | 
         
            +
                            Guidance rescale factor should fix overexposure when using zero terminal SNR.
         
     | 
| 746 | 
         
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 747 | 
         
            +
                            TODO
         
     | 
| 748 | 
         
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         
     | 
| 749 | 
         
            +
                            TODO
         
     | 
| 750 | 
         
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 751 | 
         
            +
                            TODO
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                    Examples:
         
     | 
| 754 | 
         
            +
             
     | 
| 755 | 
         
            +
                    Returns:
         
     | 
| 756 | 
         
            +
                        [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
         
     | 
| 757 | 
         
            +
                        [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         
     | 
| 758 | 
         
            +
                        `tuple. When returning a tuple, the first element is a list with the generated images, and the second
         
     | 
| 759 | 
         
            +
                        element is a list of `bool`s denoting whether the corresponding generated image likely represents
         
     | 
| 760 | 
         
            +
                        "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
         
     | 
| 761 | 
         
            +
                    """
         
     | 
| 762 | 
         
            +
                    # 0. Default height and width to unet
         
     | 
| 763 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 764 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                    original_size = original_size or (height, width)
         
     | 
| 767 | 
         
            +
                    target_size = target_size or (height, width)
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 770 | 
         
            +
                    self.check_inputs(
         
     | 
| 771 | 
         
            +
                        prompt,
         
     | 
| 772 | 
         
            +
                        height,
         
     | 
| 773 | 
         
            +
                        width,
         
     | 
| 774 | 
         
            +
                        callback_steps,
         
     | 
| 775 | 
         
            +
                        negative_prompt,
         
     | 
| 776 | 
         
            +
                        prompt_embeds,
         
     | 
| 777 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 778 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 779 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 780 | 
         
            +
                    )
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 783 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 784 | 
         
            +
                        batch_size = 1
         
     | 
| 785 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 786 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 787 | 
         
            +
                    else:
         
     | 
| 788 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                    device = self._execution_device
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 793 | 
         
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 794 | 
         
            +
                    # corresponds to doing no classifier free guidance.
         
     | 
| 795 | 
         
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                    # 3. Encode input prompt
         
     | 
| 798 | 
         
            +
                    text_encoder_lora_scale = (
         
     | 
| 799 | 
         
            +
                        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
         
     | 
| 800 | 
         
            +
                    )
         
     | 
| 801 | 
         
            +
                    (
         
     | 
| 802 | 
         
            +
                        prompt_embeds,
         
     | 
| 803 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 804 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 805 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 806 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 807 | 
         
            +
                        prompt,
         
     | 
| 808 | 
         
            +
                        device,
         
     | 
| 809 | 
         
            +
                        num_images_per_prompt,
         
     | 
| 810 | 
         
            +
                        do_classifier_free_guidance,
         
     | 
| 811 | 
         
            +
                        negative_prompt,
         
     | 
| 812 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 813 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 814 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 815 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 816 | 
         
            +
                        lora_scale=text_encoder_lora_scale,
         
     | 
| 817 | 
         
            +
                    )
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
                    # 4. Prepare timesteps
         
     | 
| 820 | 
         
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                    timesteps = self.scheduler.timesteps
         
     | 
| 823 | 
         
            +
             
     | 
| 824 | 
         
            +
                    # 5. Prepare latent variables
         
     | 
| 825 | 
         
            +
                    num_channels_latents = self.unet.config.in_channels
         
     | 
| 826 | 
         
            +
                    latents = self.prepare_latents(
         
     | 
| 827 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 828 | 
         
            +
                        num_channels_latents,
         
     | 
| 829 | 
         
            +
                        height,
         
     | 
| 830 | 
         
            +
                        width,
         
     | 
| 831 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 832 | 
         
            +
                        device,
         
     | 
| 833 | 
         
            +
                        generator,
         
     | 
| 834 | 
         
            +
                        latents,
         
     | 
| 835 | 
         
            +
                    )
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         
     | 
| 838 | 
         
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    # 7. Prepare added time ids & embeddings
         
     | 
| 841 | 
         
            +
                    add_text_embeds = pooled_prompt_embeds
         
     | 
| 842 | 
         
            +
                    add_time_ids = self._get_add_time_ids(
         
     | 
| 843 | 
         
            +
                        original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
         
     | 
| 844 | 
         
            +
                    )
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 847 | 
         
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         
     | 
| 848 | 
         
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         
     | 
| 849 | 
         
            +
                        add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 852 | 
         
            +
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 853 | 
         
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
                    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         
     | 
| 856 | 
         
            +
                        image_embeds = self.prepare_ip_adapter_image_embeds(
         
     | 
| 857 | 
         
            +
                            ip_adapter_image,
         
     | 
| 858 | 
         
            +
                            ip_adapter_image_embeds,
         
     | 
| 859 | 
         
            +
                            device,
         
     | 
| 860 | 
         
            +
                            batch_size * num_images_per_prompt,
         
     | 
| 861 | 
         
            +
                            do_classifier_free_guidance,
         
     | 
| 862 | 
         
            +
                        )
         
     | 
| 863 | 
         
            +
             
     | 
| 864 | 
         
            +
                    # 8. Denoising loop
         
     | 
| 865 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
                    # 7.1 Apply denoising_end
         
     | 
| 868 | 
         
            +
                    if denoising_end is not None:
         
     | 
| 869 | 
         
            +
                        num_inference_steps = int(round(denoising_end * num_inference_steps))
         
     | 
| 870 | 
         
            +
                        timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 873 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 874 | 
         
            +
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 875 | 
         
            +
                            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
         
     | 
| 876 | 
         
            +
             
     | 
| 877 | 
         
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 878 | 
         
            +
             
     | 
| 879 | 
         
            +
                            # predict the noise residual
         
     | 
| 880 | 
         
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 881 | 
         
            +
                            
         
     | 
| 882 | 
         
            +
                            if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         
     | 
| 883 | 
         
            +
                                added_cond_kwargs["image_embeds"] = image_embeds
         
     | 
| 884 | 
         
            +
                            
         
     | 
| 885 | 
         
            +
                            # import pdb; pdb.set_trace()
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
                            noise_pred = self.unet(
         
     | 
| 888 | 
         
            +
                                latent_model_input,
         
     | 
| 889 | 
         
            +
                                t,
         
     | 
| 890 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 891 | 
         
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         
     | 
| 892 | 
         
            +
                                added_cond_kwargs=added_cond_kwargs,
         
     | 
| 893 | 
         
            +
                                return_dict=False,
         
     | 
| 894 | 
         
            +
                            )[0]
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                            # perform guidance
         
     | 
| 897 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 898 | 
         
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         
     | 
| 899 | 
         
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         
     | 
| 900 | 
         
            +
                                if use_dynamic_threshold:
         
     | 
| 901 | 
         
            +
                                    DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
         
     | 
| 902 | 
         
            +
                                    noise_pred = DynamicThresh.dynthresh(noise_pred_text,
         
     | 
| 903 | 
         
            +
                                        noise_pred_uncond,
         
     | 
| 904 | 
         
            +
                                        guidance_scale,
         
     | 
| 905 | 
         
            +
                                        None)
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                            if do_classifier_free_guidance and guidance_rescale > 0.0:
         
     | 
| 908 | 
         
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         
     | 
| 909 | 
         
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 912 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 913 | 
         
            +
             
     | 
| 914 | 
         
            +
                            # call the callback, if provided
         
     | 
| 915 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 916 | 
         
            +
                                progress_bar.update()
         
     | 
| 917 | 
         
            +
                                if callback is not None and i % callback_steps == 0:
         
     | 
| 918 | 
         
            +
                                    callback(i, t, latents)
         
     | 
| 919 | 
         
            +
             
     | 
| 920 | 
         
            +
                    # make sureo the VAE is in float32 mode, as it overflows in float16
         
     | 
| 921 | 
         
            +
                    # torch.cuda.empty_cache()
         
     | 
| 922 | 
         
            +
                    if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
         
     | 
| 923 | 
         
            +
                        self.upcast_vae()
         
     | 
| 924 | 
         
            +
                        latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 925 | 
         
            +
             
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                    if not output_type == "latent":
         
     | 
| 928 | 
         
            +
                        latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 929 | 
         
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         
     | 
| 930 | 
         
            +
                    else:
         
     | 
| 931 | 
         
            +
                        image = latents
         
     | 
| 932 | 
         
            +
                        return StableDiffusionXLPipelineOutput(images=image)
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                    # image = self.watermark.apply_watermark(image)
         
     | 
| 935 | 
         
            +
                    image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 936 | 
         
            +
             
     | 
| 937 | 
         
            +
                    # Offload last model to CPU
         
     | 
| 938 | 
         
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         
     | 
| 939 | 
         
            +
                        self.final_offload_hook.offload()
         
     | 
| 940 | 
         
            +
             
     | 
| 941 | 
         
            +
                    if not return_dict:
         
     | 
| 942 | 
         
            +
                        return (image,)
         
     | 
| 943 | 
         
            +
             
     | 
| 944 | 
         
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
             
     | 
| 947 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 948 | 
         
            +
                pass
         
     | 
    	
        requirements.txt
    CHANGED
    
    | 
         @@ -1,7 +1,20 @@ 
     | 
|
| 1 | 
         
            -
             
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 5 | 
         
             
            transformers==4.42.4
         
     | 
| 6 | 
         
            -
            xformers
         
     | 
| 7 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            fire
         
     | 
| 2 | 
         
            +
            triton
         
     | 
| 3 | 
         
            +
            pydantic==2.8.2
         
     | 
| 4 | 
         
            +
            accelerate==0.27.2
         
     | 
| 5 | 
         
            +
            deepspeed==0.8.1
         
     | 
| 6 | 
         
            +
            huggingface-hub==0.23.4
         
     | 
| 7 | 
         
            +
            imageio==2.25.1
         
     | 
| 8 | 
         
            +
            numpy==1.21.6
         
     | 
| 9 | 
         
            +
            omegaconf==2.3.0
         
     | 
| 10 | 
         
            +
            pandas==1.3.5
         
     | 
| 11 | 
         
            +
            Pillow==9.4.0
         
     | 
| 12 | 
         
            +
            tokenizers==0.13.2
         
     | 
| 13 | 
         
            +
            torch==1.13.1
         
     | 
| 14 | 
         
            +
            torchvision==0.14.1
         
     | 
| 15 | 
         
             
            transformers==4.42.4
         
     | 
| 16 | 
         
            +
            xformers==0.0.16
         
     | 
| 17 | 
         
            +
            safetensors==0.3.3
         
     | 
| 18 | 
         
            +
            diffusers==0.28.2
         
     | 
| 19 | 
         
            +
            sentencepiece==0.1.99
         
     | 
| 20 | 
         
            +
            gradio==4.37.2
         
     | 
    	
        scripts/sample.py
    ADDED
    
    | 
         @@ -0,0 +1,42 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os, torch
         
     | 
| 2 | 
         
            +
            # from PIL import Image
         
     | 
| 3 | 
         
            +
            from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
         
     | 
| 4 | 
         
            +
            from kolors.models.modeling_chatglm import ChatGLMModel
         
     | 
| 5 | 
         
            +
            from kolors.models.tokenization_chatglm import ChatGLMTokenizer
         
     | 
| 6 | 
         
            +
            from diffusers import UNet2DConditionModel, AutoencoderKL
         
     | 
| 7 | 
         
            +
            from diffusers import EulerDiscreteScheduler
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def infer(prompt):
         
     | 
| 12 | 
         
            +
                ckpt_dir = f'{root_dir}/weights/Kolors'
         
     | 
| 13 | 
         
            +
                text_encoder = ChatGLMModel.from_pretrained(
         
     | 
| 14 | 
         
            +
                    f'{ckpt_dir}/text_encoder',
         
     | 
| 15 | 
         
            +
                    torch_dtype=torch.float16).half()
         
     | 
| 16 | 
         
            +
                tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
         
     | 
| 17 | 
         
            +
                vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half()
         
     | 
| 18 | 
         
            +
                scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
         
     | 
| 19 | 
         
            +
                unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
         
     | 
| 20 | 
         
            +
                pipe = StableDiffusionXLPipeline(
         
     | 
| 21 | 
         
            +
                        vae=vae,
         
     | 
| 22 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 23 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 24 | 
         
            +
                        unet=unet,
         
     | 
| 25 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 26 | 
         
            +
                        force_zeros_for_empty_prompt=False)
         
     | 
| 27 | 
         
            +
                pipe = pipe.to("cuda")
         
     | 
| 28 | 
         
            +
                pipe.enable_model_cpu_offload()
         
     | 
| 29 | 
         
            +
                image = pipe(
         
     | 
| 30 | 
         
            +
                    prompt=prompt,
         
     | 
| 31 | 
         
            +
                    height=1024,
         
     | 
| 32 | 
         
            +
                    width=1024,
         
     | 
| 33 | 
         
            +
                    num_inference_steps=50,
         
     | 
| 34 | 
         
            +
                    guidance_scale=5.0,
         
     | 
| 35 | 
         
            +
                    num_images_per_prompt=1,
         
     | 
| 36 | 
         
            +
                    generator= torch.Generator(pipe.device).manual_seed(66)).images[0]
         
     | 
| 37 | 
         
            +
                image.save(f'{root_dir}/scripts/outputs/sample_test.jpg')
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 41 | 
         
            +
                import fire
         
     | 
| 42 | 
         
            +
                fire.Fire(infer)
         
     | 
    	
        scripts/sampleui.py
    ADDED
    
    | 
         @@ -0,0 +1,110 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            import gradio as gr
         
     | 
| 4 | 
         
            +
            # from PIL import Image
         
     | 
| 5 | 
         
            +
            from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline
         
     | 
| 6 | 
         
            +
            from kolors.models.modeling_chatglm import ChatGLMModel
         
     | 
| 7 | 
         
            +
            from kolors.models.tokenization_chatglm import ChatGLMTokenizer
         
     | 
| 8 | 
         
            +
            from diffusers import UNet2DConditionModel, AutoencoderKL
         
     | 
| 9 | 
         
            +
            from diffusers import EulerDiscreteScheduler
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            # Initialize global variables for models and pipeline
         
     | 
| 14 | 
         
            +
            text_encoder = None
         
     | 
| 15 | 
         
            +
            tokenizer = None
         
     | 
| 16 | 
         
            +
            vae = None
         
     | 
| 17 | 
         
            +
            scheduler = None
         
     | 
| 18 | 
         
            +
            unet = None
         
     | 
| 19 | 
         
            +
            pipe = None
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def load_models():
         
     | 
| 22 | 
         
            +
                global text_encoder, tokenizer, vae, scheduler, unet, pipe
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                if text_encoder is None:
         
     | 
| 25 | 
         
            +
                    ckpt_dir = f'{root_dir}/weights/Kolors'
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                    # Load the text encoder on CPU (this speeds stuff up 2x)
         
     | 
| 28 | 
         
            +
                    text_encoder = ChatGLMModel.from_pretrained(
         
     | 
| 29 | 
         
            +
                        f'{ckpt_dir}/text_encoder',
         
     | 
| 30 | 
         
            +
                        torch_dtype=torch.float16).to('cpu').half()
         
     | 
| 31 | 
         
            +
                    tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    # Load the VAE and UNet on GPU
         
     | 
| 34 | 
         
            +
                    vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to('cuda')
         
     | 
| 35 | 
         
            +
                    scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
         
     | 
| 36 | 
         
            +
                    unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to('cuda')
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    # Prepare the pipeline
         
     | 
| 39 | 
         
            +
                    pipe = StableDiffusionXLPipeline(
         
     | 
| 40 | 
         
            +
                        vae=vae,
         
     | 
| 41 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 42 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 43 | 
         
            +
                        unet=unet,
         
     | 
| 44 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 45 | 
         
            +
                        force_zeros_for_empty_prompt=False)
         
     | 
| 46 | 
         
            +
                    pipe = pipe.to("cuda")
         
     | 
| 47 | 
         
            +
                    pipe.enable_model_cpu_offload()  # Enable offloading to balance CPU/GPU usage
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            def infer(prompt, use_random_seed, seed, height, width, num_inference_steps, guidance_scale, num_images_per_prompt):
         
     | 
| 50 | 
         
            +
                load_models()
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                if use_random_seed:
         
     | 
| 53 | 
         
            +
                    seed = torch.randint(0, 2**32 - 1, (1,)).item()
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                generator = torch.Generator(pipe.device).manual_seed(seed)
         
     | 
| 56 | 
         
            +
                images = pipe(
         
     | 
| 57 | 
         
            +
                    prompt=prompt,
         
     | 
| 58 | 
         
            +
                    height=height,
         
     | 
| 59 | 
         
            +
                    width=width,
         
     | 
| 60 | 
         
            +
                    num_inference_steps=num_inference_steps,
         
     | 
| 61 | 
         
            +
                    guidance_scale=guidance_scale,
         
     | 
| 62 | 
         
            +
                    num_images_per_prompt=num_images_per_prompt,
         
     | 
| 63 | 
         
            +
                    generator=generator
         
     | 
| 64 | 
         
            +
                ).images
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                saved_images = []
         
     | 
| 67 | 
         
            +
                output_dir = f'{root_dir}/scripts/outputs'
         
     | 
| 68 | 
         
            +
                os.makedirs(output_dir, exist_ok=True)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                for i, image in enumerate(images):
         
     | 
| 71 | 
         
            +
                    file_path = os.path.join(output_dir, 'sample_test.jpg')
         
     | 
| 72 | 
         
            +
                    base_name, ext = os.path.splitext(file_path)
         
     | 
| 73 | 
         
            +
                    counter = 1
         
     | 
| 74 | 
         
            +
                    while os.path.exists(file_path):
         
     | 
| 75 | 
         
            +
                        file_path = f"{base_name}_{counter}{ext}"
         
     | 
| 76 | 
         
            +
                        counter += 1
         
     | 
| 77 | 
         
            +
                    image.save(file_path)
         
     | 
| 78 | 
         
            +
                    saved_images.append(file_path)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                return saved_images
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            def gradio_interface():
         
     | 
| 83 | 
         
            +
                with gr.Blocks() as demo:
         
     | 
| 84 | 
         
            +
                    with gr.Row():
         
     | 
| 85 | 
         
            +
                        with gr.Column():
         
     | 
| 86 | 
         
            +
                            gr.Markdown("## Kolors: Diffusion Model Gradio Interface")
         
     | 
| 87 | 
         
            +
                            prompt = gr.Textbox(label="Prompt")
         
     | 
| 88 | 
         
            +
                            use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
         
     | 
| 89 | 
         
            +
                            seed = gr.Slider(minimum=0, maximum=2**32 - 1, step=1, label="Seed", randomize=True, visible=False)
         
     | 
| 90 | 
         
            +
                            use_random_seed.change(lambda x: gr.update(visible=not x), use_random_seed, seed)
         
     | 
| 91 | 
         
            +
                            height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=1024)
         
     | 
| 92 | 
         
            +
                            width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1024)
         
     | 
| 93 | 
         
            +
                            num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Inference Steps", value=50)
         
     | 
| 94 | 
         
            +
                            guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, step=0.1, label="Guidance Scale", value=5.0)
         
     | 
| 95 | 
         
            +
                            num_images_per_prompt = gr.Slider(minimum=1, maximum=10, step=1, label="Images per Prompt", value=1)
         
     | 
| 96 | 
         
            +
                            btn = gr.Button("Generate Image")
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                        with gr.Column():
         
     | 
| 99 | 
         
            +
                            output_images = gr.Gallery(label="Output Images", elem_id="output_gallery")
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    btn.click(
         
     | 
| 102 | 
         
            +
                        fn=infer,
         
     | 
| 103 | 
         
            +
                        inputs=[prompt, use_random_seed, seed, height, width, num_inference_steps, guidance_scale, num_images_per_prompt],
         
     | 
| 104 | 
         
            +
                        outputs=output_images
         
     | 
| 105 | 
         
            +
                    )
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                return demo
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 110 | 
         
            +
                gradio_interface().launch()
         
     |