Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,421 Bytes
e3acd98 b15b37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
# app.py
import os
import math
import pickle
import shutil
import subprocess
import sys
import textwrap
import time
from dataclasses import dataclass
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
# --- One-Time Setup Function ---
def setup_data():
"""
Checks for dataset metadata and prepares it if missing.
This involves cloning a repo, running a script, and cleaning up.
"""
data_dir = 'shakespeare_char'
meta_path = os.path.join(data_dir, 'meta.pkl')
if os.path.exists(meta_path):
print("Dataset metadata found. Skipping setup.")
return
print("Dataset metadata not found. Starting one-time setup...")
print("This may take a minute...")
repo_url = "https://github.com/karpathy/nanoGPT"
repo_dir = "nanoGPT"
try:
# 1. Clone the repository
print(f"Cloning {repo_url}...")
subprocess.run(["git", "clone", repo_url], check=True, capture_output=True)
# 2. Copy the data directory
source_data_dir = os.path.join(repo_dir, 'data', 'shakespeare_char')
print(f"Copying data from {source_data_dir} to {data_dir}...")
shutil.copytree(source_data_dir, data_dir)
# 3. Run the preparation script
prepare_script_path = os.path.join(data_dir, 'prepare.py')
print(f"Running {prepare_script_path} to generate metadata...")
# Use the same python executable that is running this script
subprocess.run([sys.executable, prepare_script_path], check=True, capture_output=True)
print("Setup successful. 'meta.pkl' has been created.")
except subprocess.CalledProcessError as e:
print(f"An error occurred during setup: {e}", file=sys.stderr)
print(f"Stdout: {e.stdout.decode()}", file=sys.stderr)
print(f"Stderr: {e.stderr.decode()}", file=sys.stderr)
sys.exit("Setup failed. Please check your git installation and internet connection.")
except Exception as e:
print(f"An unexpected error occurred: {e}", file=sys.stderr)
sys.exit("Setup failed.")
finally:
# 4. Clean up the cloned repository
if os.path.exists(repo_dir):
print(f"Cleaning up by removing '{repo_dir}' directory...")
shutil.rmtree(repo_dir)
# --- Run Setup and Load Data ---
setup_data()
# Load metadata for character mappings
data_dir = './shakespeare_char/'
meta_path = os.path.join(data_dir, 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
itos = meta['itos']
stoi = meta['stoi']
vocab_size = meta['vocab_size']
CONTEXT_LENGTH = 256
def decode(indices_tensor: torch.Tensor):
'''Decodes a 1D tensor of indices to text'''
if indices_tensor.dim() == 2:
indices_tensor = indices_tensor[0]
indices = indices_tensor.cpu().numpy()
return ''.join([itos[i] for i in indices])
def wrap_text(long_text, width=80):
"""Wraps text to a maximum line width, preserving paragraph breaks."""
paragraphs = long_text.splitlines()
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
return "\n".join(wrapped)
# --- Model Architecture (Copied from the notebook) ---
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.resid_dropout(self.c_proj(y))
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
out = scale * (x + bias) if bias is not None else scale * x
return residual + out if residual is not None else out
class DDiTBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = SelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
x_skip = x
x = modulate(self.ln_1(x), shift_msa, scale_msa)
x = self.attn(x)
x = bias_add_scale(x, None, gate_msa, x_skip)
x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
return x
class DDitFinalLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate(self.norm_final(x), shift, scale)
return self.linear(x)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
return self.mlp(t_freq)
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.sigma_map = TimestepEmbedder(config.cond_dim)
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
))
self.lm_head = DDitFinalLayer(config)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, sigma):
sigma = sigma.reshape(-1)
b, t = idx.size()
c = F.silu(self.sigma_map(sigma))
pos = torch.arange(0, t, dtype=torch.long, device=idx.device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x, c)
x = self.lm_head(x, c)
return torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
cond_dim: int = 64
dropout: float = 0.0
bias: bool = False
# --- Noise Schedule & Sampling Logic ---
class GeometricNoise:
def __init__(self, sigma_min=1e-4, sigma_max=20):
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])
def rate_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
def total_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
def __call__(self, t):
return self.total_noise(t), self.rate_noise(t)
def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
return trans.scatter(-1, x_t[..., None], diag_fill)
def staggered_score(score, delta_sigma):
exp_factor = torch.exp(-delta_sigma)[..., None]
correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
return correction + score / exp_factor
def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
eps = 1e-10
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
# --- Global Model Loading ---
print("Setting up model and device...")
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
bias=False, vocab_size=vocab_size, block_size=CONTEXT_LENGTH, dropout=0.2)
config = GPTConfig(**model_args)
model = GPT(config)
print("Loading pre-trained model weights...")
model.load_state_dict(
torch.hub.load_state_dict_from_url(
'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth',
map_location=DEVICE
)
)
model.to(DEVICE)
model.eval()
NOISE = GeometricNoise(sigma_min=1e-4, sigma_max=20)
print("Model setup complete. Launching Gradio demo...")
# --- Gradio Generation Function ---
@spaces.GPU
def generate_text(steps):
"""Generator function that yields denoised text at each step."""
steps = int(steps)
eps = 1e-5
timesteps = torch.linspace(1, eps, steps + 1, device=DEVICE)
step_size = (1 - eps) / steps
# Start with a fresh random sample
x = torch.randint(0, vocab_size, (1, CONTEXT_LENGTH), device=DEVICE)
# Initial random text
initial_text = decode(x)
yield f"Step 0/{steps} (Initial Noise):\n\n{wrap_text(initial_text)}"
time.sleep(0.5)
with torch.no_grad():
for i in range(steps):
progress(i / steps, desc=f"Denoising Step {i+1}/{steps}")
t = timesteps[i] * torch.ones(x.shape[0], 1, device=DEVICE)
curr_sigma_bar = NOISE(t)[0]
next_sigma_bar = NOISE(t - step_size)[0]
delta_sigma = curr_sigma_bar - next_sigma_bar
log_score = model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = staggered_score(score, delta_sigma)
probs = stag_score * transition(x, delta_sigma)
x = sample_categorical(probs)
# Yield the decoded text and step info
decoded_text = decode(x)
yield f"Step {i+1}/{steps}:\n\n{wrap_text(decoded_text)}"
# Final result
final_text = decode(x)
yield f"Final Result (Step {steps}/{steps}):\n\n{wrap_text(final_text)}"
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# The Annotated Discrete Diffusion Model: Live Demo
This demo visualizes the denoising process of a character-level discrete diffusion model.
Start with pure random noise and watch as coherent text, in the style of Shakespeare, emerges over several steps.
"""
)
with gr.Row():
steps_slider = gr.Slider(
minimum=10,
maximum=200,
value=128,
step=1,
label="Number of Denoising Steps",
info="More steps can lead to better quality but take longer."
)
generate_button = gr.Button("Generate", variant="primary")
output_textbox = gr.Textbox(
label="Denoising Process",
lines=15,
interactive=False,
show_copy_button=True,
placeholder="The denoising process will appear here..."
)
generate_button.click(
fn=generate_text,
inputs=[steps_slider],
outputs=[output_textbox]
)
if __name__ == "__main__":
demo.launch() |