File size: 16,836 Bytes
a835137
 
 
 
 
 
e3acd98
a835137
e3acd98
a835137
e3acd98
a835137
 
97eaaa1
e3acd98
 
 
97eaaa1
e3acd98
a835137
e3acd98
a835137
 
 
 
 
e3acd98
a835137
 
 
e3acd98
 
a835137
e3acd98
 
a835137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3acd98
 
 
 
 
a835137
e3acd98
 
a835137
 
e3acd98
 
a835137
 
e3acd98
97eaaa1
e3acd98
 
 
 
 
 
a835137
 
 
 
 
 
 
 
 
 
 
 
 
e3acd98
 
 
 
 
 
 
 
 
a835137
 
 
 
 
e3acd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a835137
e3acd98
 
 
 
 
 
a835137
 
e3acd98
 
 
 
 
a835137
 
 
 
 
 
 
e3acd98
 
 
 
 
 
 
 
5d89594
e3acd98
 
 
 
a835137
 
 
5d89594
e3acd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a835137
 
e3acd98
 
 
 
 
 
 
 
 
 
 
 
 
a835137
 
 
e3acd98
 
 
 
 
 
 
a835137
 
e3acd98
 
 
 
a835137
 
e3acd98
 
 
 
 
 
 
a835137
e3acd98
 
 
d1a16a0
 
 
e3acd98
 
 
 
 
 
 
 
 
 
 
a835137
 
e3acd98
 
 
 
 
a835137
e3acd98
a835137
 
e3acd98
 
 
a835137
 
 
e3acd98
 
 
a835137
 
 
e3acd98
 
 
 
 
 
a835137
 
e3acd98
 
 
 
 
 
 
 
 
 
 
 
a835137
d1a16a0
a835137
e3acd98
a835137
e3acd98
 
 
 
 
 
a835137
e3acd98
 
a835137
e3acd98
 
a835137
 
e3acd98
a835137
97eaaa1
e3acd98
 
93eee8b
97eaaa1
 
93eee8b
e3acd98
 
a835137
97eaaa1
 
 
a835137
 
 
97eaaa1
e3acd98
a835137
 
 
e3acd98
a835137
 
 
 
 
 
 
 
 
 
 
 
 
 
97eaaa1
a835137
97eaaa1
a835137
 
 
 
97eaaa1
a835137
 
 
 
 
 
 
 
97eaaa1
 
 
 
a835137
97eaaa1
 
 
 
 
 
 
 
 
a835137
 
f8a5342
11a9f21
 
a42b836
c9213f4
f8a5342
e3acd98
 
a835137
c9213f4
638bce8
e3acd98
 
11a9f21
 
a835137
11a9f21
 
 
 
 
 
 
97eaaa1
 
 
2097127
 
97eaaa1
 
 
 
 
 
 
638bce8
97eaaa1
 
 
 
 
a835137
97eaaa1
 
 
a835137
 
97eaaa1
 
 
 
b15b37a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import gradio as gr
import spaces
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
import math
import os
import pickle
import requests
import textwrap
import subprocess
import shutil
import time
from dataclasses import dataclass
from typing import Optional

# --- 1. Automated Environment and Data Setup ---

def setup_environment():
    """
    Checks for and sets up the necessary data and code.
    - Clones nanoGPT if not present.
    - Copies the shakespeare_char dataset directory.
    - Runs the data preparation script to create meta.pkl and binary files.
    This function makes the script self-contained.
    """
    nano_gpt_repo_path = 'nanoGPT'
    data_dir_path = 'shakespeare_char'
    meta_path = os.path.join(data_dir_path, 'meta.pkl')

    if os.path.exists(meta_path):
        print("Dataset and metadata found. Skipping setup.")
        return

    print("Required data not found. Starting one-time setup...")

    if not os.path.exists(nano_gpt_repo_path):
        print(f"Cloning nanoGPT repository...")
        try:
            subprocess.run(
                ['git', 'clone', 'https://github.com/karpathy/nanoGPT.git'],
                check=True, capture_output=True, text=True
            )
            print("Cloned successfully.")
        except subprocess.CalledProcessError as e:
            print(f"Error cloning repository: {e.stderr}")
            raise
    else:
        print("nanoGPT repository already exists.")

    source_data_dir = os.path.join(nano_gpt_repo_path, 'data', 'shakespeare_char')
    if not os.path.exists(data_dir_path):
        print(f"Copying '{source_data_dir}' to '{data_dir_path}'...")
        shutil.copytree(source_data_dir, data_dir_path)
        print("Copied successfully.")
    else:
        print(f"'{data_dir_path}' directory already exists.")
        
    prepare_script_path = os.path.join(data_dir_path, 'prepare.py')
    if not os.path.exists(meta_path):
        print(f"Running data preparation script: '{prepare_script_path}'...")
        try:
            subprocess.run(
                ['python', 'prepare.py'],
                check=True, cwd=data_dir_path, capture_output=True, text=True
            )
            print("Data preparation script finished successfully.")
        except subprocess.CalledProcessError as e:
            print(f"Error running prepare.py: {e.stderr}")
            raise
    
    print("Setup complete.")

setup_environment()

# --- 2. Global Setup & Helper Functions ---

data_dir = './shakespeare_char/'
meta_path = os.path.join(data_dir, 'meta.pkl')
with open(meta_path, 'rb') as f:
    meta = pickle.load(f)

vocab_size = meta['vocab_size']
itos = meta['itos']
stoi = meta['stoi']
context_length = 256
device = 'cuda' if torch.cuda.is_available() else 'cpu'

def decode(indices_tensor: torch.Tensor):
    if indices_tensor.dim() > 1:
        indices_tensor = indices_tensor.squeeze(0)
    indices = indices_tensor.cpu().numpy()
    return ''.join([itos.get(i, '?') for i in indices])

def wrap_text(long_text, width=80):
    paragraphs = long_text.splitlines()
    wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
    return "\n".join(wrapped)


# --- 3. Model Architecture (Identical to Notebook) ---

@dataclass
class GPTConfig:
    block_size: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768
    cond_dim: int = 64
    dropout: float = 0.0
    bias: bool = False

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu    = nn.GELU()
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class SelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout
        self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
    def forward(self, x):
        B, T, C = x.size()
        q, k, v  = self.c_attn(x).split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        if self.flash:
            y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
        else:
            att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
            att = F.softmax(att, dim=-1)
            att = self.attn_dropout(att)
            y = att @ v
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
    return x * (1 + scale) + shift

def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
    if bias is not None:
        out = scale * (x + bias)
    else:
        out = scale * x
    if residual is not None:
        out = residual + out
    return out

class DDiTBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
        self.attn = SelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
        self.mlp = MLP(config)
        self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd)
        self.adaLN_modulation.weight.data.zero_()
        self.adaLN_modulation.bias.data.zero_()
    def forward(self, x, c):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
        x_skip = x
        x = modulate(self.ln_1(x), shift_msa, scale_msa)
        x = self.attn(x)
        x = bias_add_scale(self.attn(self.ln_1(x)), None, gate_msa, x_skip)
        x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
        return x

class DDitFinalLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
        self.linear = nn.Linear(config.n_embd, config.vocab_size)
        self.linear.weight.data.zero_()
        self.linear.bias.data.zero_()
        self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
        self.adaLN_modulation.weight.data.zero_()
        self.adaLN_modulation.bias.data.zero_()
    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x

class TimestepEmbedder(nn.Module):
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size
    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding
    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.vocab_size is not None
        assert config.block_size is not None
        self.config = config
        self.sigma_map = TimestepEmbedder(config.cond_dim)
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd, bias=config.bias),
        ))
        self.lm_head = DDitFinalLayer(config)
        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    def forward(self, idx, sigma):
        sigma = sigma.reshape(-1)
        b, t = idx.size()
        c = F.silu(self.sigma_map(sigma))
        assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
        pos = torch.arange(0, t, dtype=torch.long, device=device)
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        for block in self.transformer.h:
            x = block(x, c)
        x = self.transformer.ln_f(x)
        x = self.lm_head(x, c)
        x = torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
        return x

class GeometricNoise:
    def __init__(self, sigma_min=1e-4, sigma_max=20):
        self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max]).to(device)
    def rate_noise(self, t):
        return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
    def total_noise(self, t):
        return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
    def __call__(self, t):
        return self.total_noise(t), self.rate_noise(t)

# --- 4. Inference & Sampling Logic (Identical to Notebook) ---

def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
    base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
    trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
    trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
    diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
    trans = trans.scatter(-1, x_t[..., None], diag_fill)
    return trans

def staggered_score(score, delta_sigma):
    exp_factor = torch.exp(-delta_sigma)[..., None]
    correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
    return correction + score / exp_factor

def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
    eps = 1e-10
    gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
    return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)


# --- 5. Model Initialization and Loading ---

print("Initializing and loading the pretrained model...")
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
                  bias=False, vocab_size=vocab_size, block_size=context_length, dropout=0.2)
config = GPTConfig(**model_args)
model = GPT(config)

model.load_state_dict(
    torch.hub.load_state_dict_from_url(
        'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth',
        map_location=device
    )
)
model.to(device)
model.eval()

noise = GeometricNoise(sigma_min=1e-4, sigma_max=20)
print("Model loaded successfully.")


# --- 6. Gradio Interface Logic ---
@spaces.GPU
def generate_text(steps):
    """
    Fast generation phase. Runs the diffusion process and stores all
    intermediate frames in a list, then returns the final text and the list.
    """
    steps = int(steps)
    eps = 1e-5
    
    # List to store each frame of the diffusion process
    diffusion_frames = []
    
    # Start with a random sample
    x = torch.randint(0, vocab_size, (1, context_length), device=device)
    initial_text = f"--- Initial Random Noise ---\n\n{wrap_text(decode(x[0]))}"
    diffusion_frames.append(initial_text)

    timesteps = torch.linspace(1, eps, steps + 1, device=device)
    step_size = (1 - eps) / steps
    
    with torch.no_grad():
        for i in range(steps):
            t = timesteps[i] * torch.ones(x.shape[0], 1, device=device)
            curr_sigma_bar = noise(t)[0]
            
            next_sigma_bar = noise(t - step_size)[0]
            delta_sigma = curr_sigma_bar - next_sigma_bar

            log_score = model(x, curr_sigma_bar)
            score = torch.exp(log_score)

            stag_score = staggered_score(score, delta_sigma)
            probs = stag_score * transition(x, delta_sigma)
            x = sample_categorical(probs)
            
            # Store the frame
            progress_text = f"--- Denoising Step {i + 1}/{steps} ---\n\n{wrap_text(decode(x[0]))}"
            diffusion_frames.append(progress_text)
            
        # Final denoising step
        t = timesteps[steps] * torch.ones(x.shape[0], 1, device=device)
        curr_sigma_bar = noise(t)[0]
        delta_sigma = curr_sigma_bar

        log_score = model(x, curr_sigma_bar)
        score = torch.exp(log_score)
        stag_score = staggered_score(score, delta_sigma)
        probs = stag_score * transition(x, delta_sigma)
        x = sample_categorical(probs)

    final_text = f"--- Final Denoised Text (Step {steps}) ---\n\n{wrap_text(decode(x[0]))}"
    diffusion_frames.append(final_text)
    
    # Return the final text and the complete list of frames
    return final_text, diffusion_frames

def replay_diffusion(frames, replay_speed):
    """
    Slow replay phase. Iterates through the stored frames and yields them
    with a delay to create an animation effect.
    """
    delay = 0.5 / replay_speed # Calculate delay based on speed multiplier
    for frame in frames:
        yield frame
        time.sleep(delay)

# Define the Gradio UI
css = '''.gradio-container > .fillable {max-width: 720px !important}
h3{margin-top: 1em}
p{margin-top: 0}
textarea{font-family: monospace;background-color: black}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    gr.Markdown(
        """
        # The Annotated Discrete Diffusion Models
        ### Tiny 7.23M parameters Shakespeare character diffusion model by [Ashwani Kumar](https://x.com/ash_at_tt/status/1977376958859092250)
        [GitHub](https://github.com/ash80/diffusion-gpt), [Colab](https://colab.research.google.com/github/ash80/diffusion-gpt/blob/master/The_Annotated_Discrete_Diffusion_Models.ipynb)
        """
    )

    generate_button = gr.Button("Generate", variant="primary")
    
    output_textbox = gr.Textbox(
        label="Generated Text", 
        lines=15, 
        interactive=False, 
        show_copy_button=True,
        placeholder="Generation will appear here..."
    )
    with gr.Row():
        steps_slider = gr.Slider(
            minimum=64, 
            maximum=512, 
            value=128, 
            step=1, 
            label="Denoising Steps",
            info="Number of steps in the generation process."
        )
        speed_slider = gr.Slider(
            minimum=1,
            maximum=20,
            value=10,
            step=1,
            label="Replay Speed",
            info="Controls the speed of the animation after generation.",
            visible=False
        )
    
    diffusion_frames_state = gr.State([])

    generate_event = generate_button.click(
        fn=generate_text, 
        inputs=[steps_slider], 
        outputs=[output_textbox, diffusion_frames_state]
    ).then(
        fn=replay_diffusion,
        inputs=[diffusion_frames_state, speed_slider],
        outputs=[output_textbox]
    )

if __name__ == "__main__":
    demo.launch()