diffusion-gpt / app.py
multimodalart's picture
Update app.py
b15b37a verified
raw
history blame
14.4 kB
# app.py
import os
import math
import pickle
import shutil
import subprocess
import sys
import textwrap
import time
from dataclasses import dataclass
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
# --- One-Time Setup Function ---
def setup_data():
"""
Checks for dataset metadata and prepares it if missing.
This involves cloning a repo, running a script, and cleaning up.
"""
data_dir = 'shakespeare_char'
meta_path = os.path.join(data_dir, 'meta.pkl')
if os.path.exists(meta_path):
print("Dataset metadata found. Skipping setup.")
return
print("Dataset metadata not found. Starting one-time setup...")
print("This may take a minute...")
repo_url = "https://github.com/karpathy/nanoGPT"
repo_dir = "nanoGPT"
try:
# 1. Clone the repository
print(f"Cloning {repo_url}...")
subprocess.run(["git", "clone", repo_url], check=True, capture_output=True)
# 2. Copy the data directory
source_data_dir = os.path.join(repo_dir, 'data', 'shakespeare_char')
print(f"Copying data from {source_data_dir} to {data_dir}...")
shutil.copytree(source_data_dir, data_dir)
# 3. Run the preparation script
prepare_script_path = os.path.join(data_dir, 'prepare.py')
print(f"Running {prepare_script_path} to generate metadata...")
# Use the same python executable that is running this script
subprocess.run([sys.executable, prepare_script_path], check=True, capture_output=True)
print("Setup successful. 'meta.pkl' has been created.")
except subprocess.CalledProcessError as e:
print(f"An error occurred during setup: {e}", file=sys.stderr)
print(f"Stdout: {e.stdout.decode()}", file=sys.stderr)
print(f"Stderr: {e.stderr.decode()}", file=sys.stderr)
sys.exit("Setup failed. Please check your git installation and internet connection.")
except Exception as e:
print(f"An unexpected error occurred: {e}", file=sys.stderr)
sys.exit("Setup failed.")
finally:
# 4. Clean up the cloned repository
if os.path.exists(repo_dir):
print(f"Cleaning up by removing '{repo_dir}' directory...")
shutil.rmtree(repo_dir)
# --- Run Setup and Load Data ---
setup_data()
# Load metadata for character mappings
data_dir = './shakespeare_char/'
meta_path = os.path.join(data_dir, 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
itos = meta['itos']
stoi = meta['stoi']
vocab_size = meta['vocab_size']
CONTEXT_LENGTH = 256
def decode(indices_tensor: torch.Tensor):
'''Decodes a 1D tensor of indices to text'''
if indices_tensor.dim() == 2:
indices_tensor = indices_tensor[0]
indices = indices_tensor.cpu().numpy()
return ''.join([itos[i] for i in indices])
def wrap_text(long_text, width=80):
"""Wraps text to a maximum line width, preserving paragraph breaks."""
paragraphs = long_text.splitlines()
wrapped = [textwrap.fill(p, width=width) if p else '' for p in paragraphs]
return "\n".join(wrapped)
# --- Model Architecture (Copied from the notebook) ---
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
return self.dropout(self.c_proj(self.gelu(self.c_fc(x))))
class SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if self.flash:
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=False)
else:
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.resid_dropout(self.c_proj(y))
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
return x * (1 + scale) + shift
def bias_add_scale(x: torch.Tensor, bias: Optional[torch.Tensor], scale: torch.Tensor, residual: Optional[torch.Tensor]) -> torch.Tensor:
out = scale * (x + bias) if bias is not None else scale * x
return residual + out if residual is not None else out
class DDiTBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = SelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = MLP(config)
self.adaLN_modulation = nn.Linear(config.cond_dim, 6 * config.n_embd, bias=True)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
x_skip = x
x = modulate(self.ln_1(x), shift_msa, scale_msa)
x = self.attn(x)
x = bias_add_scale(x, None, gate_msa, x_skip)
x = bias_add_scale(self.mlp(modulate(self.ln_2(x), shift_mlp, scale_mlp)), None, gate_mlp, x)
return x
class DDitFinalLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.norm_final = nn.LayerNorm(config.n_embd, bias=config.bias)
self.linear = nn.Linear(config.n_embd, config.vocab_size)
self.linear.weight.data.zero_()
self.linear.bias.data.zero_()
self.adaLN_modulation = nn.Linear(config.cond_dim, 2 * config.n_embd)
self.adaLN_modulation.weight.data.zero_()
self.adaLN_modulation.bias.data.zero_()
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
x = modulate(self.norm_final(x), shift, scale)
return self.linear(x)
class TimestepEmbedder(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
return self.mlp(t_freq)
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.sigma_map = TimestepEmbedder(config.cond_dim)
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([DDiTBlock(config) for _ in range(config.n_layer)]),
))
self.lm_head = DDitFinalLayer(config)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, sigma):
sigma = sigma.reshape(-1)
b, t = idx.size()
c = F.silu(self.sigma_map(sigma))
pos = torch.arange(0, t, dtype=torch.long, device=idx.device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x, c)
x = self.lm_head(x, c)
return torch.scatter(x, -1, idx[..., None], torch.zeros_like(x[..., :1]))
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
cond_dim: int = 64
dropout: float = 0.0
bias: bool = False
# --- Noise Schedule & Sampling Logic ---
class GeometricNoise:
def __init__(self, sigma_min=1e-4, sigma_max=20):
self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])
def rate_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (self.sigmas[1].log() - self.sigmas[0].log())
def total_noise(self, t):
return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
def __call__(self, t):
return self.total_noise(t), self.rate_noise(t)
def transition(x_t: torch.Tensor, delta_sigma: torch.Tensor) -> torch.Tensor:
base_prob = (1 - torch.exp(-delta_sigma[..., None])) / vocab_size
trans = torch.ones(*x_t.shape, vocab_size, device=x_t.device) * base_prob
trans = trans.scatter(-1, x_t[..., None], torch.zeros_like(trans))
diag_fill = 1 - trans.sum(dim=-1, keepdim=True)
return trans.scatter(-1, x_t[..., None], diag_fill)
def staggered_score(score, delta_sigma):
exp_factor = torch.exp(-delta_sigma)[..., None]
correction = ((exp_factor - 1) / (vocab_size * exp_factor)) * score.sum(dim=-1, keepdim=True)
return correction + score / exp_factor
def sample_categorical(probs: torch.Tensor) -> torch.Tensor:
eps = 1e-10
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + eps) + eps)
return torch.argmax(torch.log(probs + eps) + gumbel_noise, dim=-1)
# --- Global Model Loading ---
print("Setting up model and device...")
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_args = dict(n_layer=6, n_head=6, n_embd=384, cond_dim=64,
bias=False, vocab_size=vocab_size, block_size=CONTEXT_LENGTH, dropout=0.2)
config = GPTConfig(**model_args)
model = GPT(config)
print("Loading pre-trained model weights...")
model.load_state_dict(
torch.hub.load_state_dict_from_url(
'https://raw.githubusercontent.com/ash80/diffusion-gpt/master/pretrained_model/model_epoch_25.pth',
map_location=DEVICE
)
)
model.to(DEVICE)
model.eval()
NOISE = GeometricNoise(sigma_min=1e-4, sigma_max=20)
print("Model setup complete. Launching Gradio demo...")
# --- Gradio Generation Function ---
@spaces.GPU
def generate_text(steps):
"""Generator function that yields denoised text at each step."""
steps = int(steps)
eps = 1e-5
timesteps = torch.linspace(1, eps, steps + 1, device=DEVICE)
step_size = (1 - eps) / steps
# Start with a fresh random sample
x = torch.randint(0, vocab_size, (1, CONTEXT_LENGTH), device=DEVICE)
# Initial random text
initial_text = decode(x)
yield f"Step 0/{steps} (Initial Noise):\n\n{wrap_text(initial_text)}"
time.sleep(0.5)
with torch.no_grad():
for i in range(steps):
progress(i / steps, desc=f"Denoising Step {i+1}/{steps}")
t = timesteps[i] * torch.ones(x.shape[0], 1, device=DEVICE)
curr_sigma_bar = NOISE(t)[0]
next_sigma_bar = NOISE(t - step_size)[0]
delta_sigma = curr_sigma_bar - next_sigma_bar
log_score = model(x, curr_sigma_bar)
score = torch.exp(log_score)
stag_score = staggered_score(score, delta_sigma)
probs = stag_score * transition(x, delta_sigma)
x = sample_categorical(probs)
# Yield the decoded text and step info
decoded_text = decode(x)
yield f"Step {i+1}/{steps}:\n\n{wrap_text(decoded_text)}"
# Final result
final_text = decode(x)
yield f"Final Result (Step {steps}/{steps}):\n\n{wrap_text(final_text)}"
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# The Annotated Discrete Diffusion Model: Live Demo
This demo visualizes the denoising process of a character-level discrete diffusion model.
Start with pure random noise and watch as coherent text, in the style of Shakespeare, emerges over several steps.
"""
)
with gr.Row():
steps_slider = gr.Slider(
minimum=10,
maximum=200,
value=128,
step=1,
label="Number of Denoising Steps",
info="More steps can lead to better quality but take longer."
)
generate_button = gr.Button("Generate", variant="primary")
output_textbox = gr.Textbox(
label="Denoising Process",
lines=15,
interactive=False,
show_copy_button=True,
placeholder="The denoising process will appear here..."
)
generate_button.click(
fn=generate_text,
inputs=[steps_slider],
outputs=[output_textbox]
)
if __name__ == "__main__":
demo.launch()