Commit
·
b3d3b2f
1
Parent(s):
dbfd73e
Add resize and output
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from pathlib import Path
|
|
| 4 |
import argparse
|
| 5 |
import shutil
|
| 6 |
from train_dreambooth import run_training
|
|
|
|
| 7 |
|
| 8 |
css = '''
|
| 9 |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
|
|
@@ -11,7 +12,7 @@ css = '''
|
|
| 11 |
#component-4, #component-3, #component-10{min-height: 0}
|
| 12 |
'''
|
| 13 |
shutil.unpack_archive("mix.zip", "mix")
|
| 14 |
-
model_to_load = "
|
| 15 |
maximum_concepts = 3
|
| 16 |
def swap_values_files(*total_files):
|
| 17 |
file_counter = 0
|
|
@@ -52,8 +53,22 @@ def train(*inputs):
|
|
| 52 |
os.makedirs('instance_images',exist_ok=True)
|
| 53 |
files = inputs[i+(maximum_concepts*2)]
|
| 54 |
prompt = inputs[i+maximum_concepts]
|
| 55 |
-
for j,
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
file_counter += 1
|
| 58 |
|
| 59 |
uses_custom = inputs[-1]
|
|
@@ -145,6 +160,8 @@ def train(*inputs):
|
|
| 145 |
|
| 146 |
run_training(args_general)
|
| 147 |
os.rmdir('instance_images')
|
|
|
|
|
|
|
| 148 |
with gr.Blocks(css=css) as demo:
|
| 149 |
with gr.Box():
|
| 150 |
# You can remove this part here for your local clone
|
|
@@ -219,11 +236,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 219 |
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style`.")
|
| 220 |
steps = gr.Number(label="How many steps", value=800)
|
| 221 |
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
|
| 222 |
-
|
| 223 |
#for file in file_collection:
|
| 224 |
# file.change(fn=swap_values_files, inputs=file_collection, outputs=[steps])
|
| 225 |
|
| 226 |
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder])
|
| 227 |
train_btn = gr.Button("Start Training")
|
| 228 |
-
|
|
|
|
| 229 |
demo.launch()
|
|
|
|
| 4 |
import argparse
|
| 5 |
import shutil
|
| 6 |
from train_dreambooth import run_training
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
css = '''
|
| 10 |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
|
|
|
|
| 12 |
#component-4, #component-3, #component-10{min-height: 0}
|
| 13 |
'''
|
| 14 |
shutil.unpack_archive("mix.zip", "mix")
|
| 15 |
+
model_to_load = "multimodalart/sd-fine-tunable"
|
| 16 |
maximum_concepts = 3
|
| 17 |
def swap_values_files(*total_files):
|
| 18 |
file_counter = 0
|
|
|
|
| 53 |
os.makedirs('instance_images',exist_ok=True)
|
| 54 |
files = inputs[i+(maximum_concepts*2)]
|
| 55 |
prompt = inputs[i+maximum_concepts]
|
| 56 |
+
for j, file_temp in enumerate(files):
|
| 57 |
+
file = Image.open(file_temp.name)
|
| 58 |
+
width, height = file.size
|
| 59 |
+
side_length = min(width, height)
|
| 60 |
+
left = (width - side_length)/2
|
| 61 |
+
top = (height - side_length)/2
|
| 62 |
+
right = (width + side_length)/2
|
| 63 |
+
bottom = (height + side_length)/2
|
| 64 |
+
image = file.crop((left, top, right, bottom))
|
| 65 |
+
image = image.resize((512, 512))
|
| 66 |
+
extension = file_temp.name.split(".")[1]
|
| 67 |
+
if (extension.upper() == "JPG"):
|
| 68 |
+
image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100)
|
| 69 |
+
else:
|
| 70 |
+
image.save(f'instance_images/{prompt}_({j+1}).jpg', format=extension.upper())
|
| 71 |
+
#shutil.copy(file.name, )
|
| 72 |
file_counter += 1
|
| 73 |
|
| 74 |
uses_custom = inputs[-1]
|
|
|
|
| 160 |
|
| 161 |
run_training(args_general)
|
| 162 |
os.rmdir('instance_images')
|
| 163 |
+
shutil.make_archive("output_model.zip", 'zip', "output_model")
|
| 164 |
+
return gr.update(visible=True, value="output_model.zip")
|
| 165 |
with gr.Blocks(css=css) as demo:
|
| 166 |
with gr.Box():
|
| 167 |
# You can remove this part here for your local clone
|
|
|
|
| 236 |
gr.Markdown("If not checked, the number of steps and % of frozen encoder will be tuned automatically according to the amount of images you upload and whether you are training an `object`, `person` or `style`.")
|
| 237 |
steps = gr.Number(label="How many steps", value=800)
|
| 238 |
perc_txt_encoder = gr.Number(label="Percentage of the training steps the text-encoder should be trained as well", value=30)
|
| 239 |
+
|
| 240 |
#for file in file_collection:
|
| 241 |
# file.change(fn=swap_values_files, inputs=file_collection, outputs=[steps])
|
| 242 |
|
| 243 |
type_of_thing.change(fn=swap_text, inputs=[type_of_thing], outputs=[thing_description, thing_image_example, things_naming, perc_txt_encoder])
|
| 244 |
train_btn = gr.Button("Start Training")
|
| 245 |
+
result = gr.File(label="Uploaded model")
|
| 246 |
+
train_btn.click(fn=train, inputs=is_visible+concept_collection+file_collection+[type_of_thing]+[steps]+[perc_txt_encoder]+[swap_auto_calculated], outputs=[result])
|
| 247 |
demo.launch()
|