Spaces:
Running
on
Zero
Running
on
Zero
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import PeftAdapterMixin | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.attention_processor import AttentionProcessor | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| is_torch_version, | |
| logging, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.models.controlnet import BaseOutput, zero_module | |
| from diffusers.models.embeddings import ( | |
| CombinedTimestepGuidanceTextProjEmbeddings, | |
| CombinedTimestepTextProjEmbeddings, | |
| ) | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from transformer_flux import ( | |
| EmbedND, | |
| FluxSingleTransformerBlock, | |
| FluxTransformerBlock, | |
| ) | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class FluxControlNetOutput(BaseOutput): | |
| controlnet_block_samples: Tuple[torch.Tensor] | |
| controlnet_single_block_samples: Tuple[torch.Tensor] | |
| class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| patch_size: int = 1, | |
| in_channels: int = 64, | |
| num_layers: int = 19, | |
| num_single_layers: int = 38, | |
| attention_head_dim: int = 128, | |
| num_attention_heads: int = 24, | |
| joint_attention_dim: int = 4096, | |
| pooled_projection_dim: int = 768, | |
| guidance_embeds: bool = False, | |
| axes_dims_rope: List[int] = [16, 56, 56], | |
| extra_condition_channels: int = 1 * 4, | |
| ): | |
| super().__init__() | |
| self.out_channels = in_channels | |
| self.inner_dim = num_attention_heads * attention_head_dim | |
| self.pos_embed = EmbedND( | |
| dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope | |
| ) | |
| text_time_guidance_cls = ( | |
| CombinedTimestepGuidanceTextProjEmbeddings | |
| if guidance_embeds | |
| else CombinedTimestepTextProjEmbeddings | |
| ) | |
| self.time_text_embed = text_time_guidance_cls( | |
| embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim | |
| ) | |
| self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) | |
| self.x_embedder = nn.Linear(in_channels, self.inner_dim) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| FluxTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.single_transformer_blocks = nn.ModuleList( | |
| [ | |
| FluxSingleTransformerBlock( | |
| dim=self.inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| ) | |
| for _ in range(num_single_layers) | |
| ] | |
| ) | |
| # controlnet_blocks | |
| self.controlnet_blocks = nn.ModuleList([]) | |
| for _ in range(len(self.transformer_blocks)): | |
| self.controlnet_blocks.append( | |
| zero_module(nn.Linear(self.inner_dim, self.inner_dim)) | |
| ) | |
| self.controlnet_single_blocks = nn.ModuleList([]) | |
| for _ in range(len(self.single_transformer_blocks)): | |
| self.controlnet_single_blocks.append( | |
| zero_module(nn.Linear(self.inner_dim, self.inner_dim)) | |
| ) | |
| self.controlnet_x_embedder = zero_module( | |
| torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim) | |
| ) | |
| self.gradient_checkpointing = False | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self): | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def from_transformer( | |
| cls, | |
| transformer, | |
| num_layers: int = 4, | |
| num_single_layers: int = 10, | |
| attention_head_dim: int = 128, | |
| num_attention_heads: int = 24, | |
| load_weights_from_transformer=True, | |
| ): | |
| config = transformer.config | |
| config["num_layers"] = num_layers | |
| config["num_single_layers"] = num_single_layers | |
| config["attention_head_dim"] = attention_head_dim | |
| config["num_attention_heads"] = num_attention_heads | |
| controlnet = cls(**config) | |
| if load_weights_from_transformer: | |
| controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) | |
| controlnet.time_text_embed.load_state_dict( | |
| transformer.time_text_embed.state_dict() | |
| ) | |
| controlnet.context_embedder.load_state_dict( | |
| transformer.context_embedder.state_dict() | |
| ) | |
| controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) | |
| controlnet.transformer_blocks.load_state_dict( | |
| transformer.transformer_blocks.state_dict(), strict=False | |
| ) | |
| controlnet.single_transformer_blocks.load_state_dict( | |
| transformer.single_transformer_blocks.state_dict(), strict=False | |
| ) | |
| controlnet.controlnet_x_embedder = zero_module( | |
| controlnet.controlnet_x_embedder | |
| ) | |
| return controlnet | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| controlnet_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| encoder_hidden_states: torch.Tensor = None, | |
| pooled_projections: torch.Tensor = None, | |
| timestep: torch.LongTensor = None, | |
| img_ids: torch.Tensor = None, | |
| txt_ids: torch.Tensor = None, | |
| guidance: torch.Tensor = None, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: | |
| """ | |
| The [`FluxTransformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): | |
| Input `hidden_states`. | |
| encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): | |
| Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. | |
| pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected | |
| from the embeddings of input conditions. | |
| timestep ( `torch.LongTensor`): | |
| Used to indicate denoising step. | |
| block_controlnet_hidden_states: (`list` of `torch.Tensor`): | |
| A list of tensors that if specified are added to the residuals of transformer blocks. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| if joint_attention_kwargs is not None: | |
| joint_attention_kwargs = joint_attention_kwargs.copy() | |
| lora_scale = joint_attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if ( | |
| joint_attention_kwargs is not None | |
| and joint_attention_kwargs.get("scale", None) is not None | |
| ): | |
| logger.warning( | |
| "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| hidden_states = self.x_embedder(hidden_states) | |
| # add condition | |
| hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) | |
| timestep = timestep.to(hidden_states.dtype) * 1000 | |
| if guidance is not None: | |
| guidance = guidance.to(hidden_states.dtype) * 1000 | |
| else: | |
| guidance = None | |
| temb = ( | |
| self.time_text_embed(timestep, pooled_projections) | |
| if guidance is None | |
| else self.time_text_embed(timestep, guidance, pooled_projections) | |
| ) | |
| encoder_hidden_states = self.context_embedder(encoder_hidden_states) | |
| txt_ids = txt_ids.expand(img_ids.size(0), -1, -1) | |
| ids = torch.cat((txt_ids, img_ids), dim=1) | |
| image_rotary_emb = self.pos_embed(ids) | |
| block_samples = () | |
| for _, block in enumerate(self.transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| ( | |
| encoder_hidden_states, | |
| hidden_states, | |
| ) = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| temb, | |
| image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| encoder_hidden_states, hidden_states = block( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| block_samples = block_samples + (hidden_states,) | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| single_block_samples = () | |
| for _, block in enumerate(self.single_transformer_blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| temb, | |
| image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = block( | |
| hidden_states=hidden_states, | |
| temb=temb, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| single_block_samples = single_block_samples + ( | |
| hidden_states[:, encoder_hidden_states.shape[1] :], | |
| ) | |
| # controlnet block | |
| controlnet_block_samples = () | |
| for block_sample, controlnet_block in zip( | |
| block_samples, self.controlnet_blocks | |
| ): | |
| block_sample = controlnet_block(block_sample) | |
| controlnet_block_samples = controlnet_block_samples + (block_sample,) | |
| controlnet_single_block_samples = () | |
| for single_block_sample, controlnet_block in zip( | |
| single_block_samples, self.controlnet_single_blocks | |
| ): | |
| single_block_sample = controlnet_block(single_block_sample) | |
| controlnet_single_block_samples = controlnet_single_block_samples + ( | |
| single_block_sample, | |
| ) | |
| # scaling | |
| controlnet_block_samples = [ | |
| sample * conditioning_scale for sample in controlnet_block_samples | |
| ] | |
| controlnet_single_block_samples = [ | |
| sample * conditioning_scale for sample in controlnet_single_block_samples | |
| ] | |
| # | |
| controlnet_block_samples = ( | |
| None if len(controlnet_block_samples) == 0 else controlnet_block_samples | |
| ) | |
| controlnet_single_block_samples = ( | |
| None | |
| if len(controlnet_single_block_samples) == 0 | |
| else controlnet_single_block_samples | |
| ) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (controlnet_block_samples, controlnet_single_block_samples) | |
| return FluxControlNetOutput( | |
| controlnet_block_samples=controlnet_block_samples, | |
| controlnet_single_block_samples=controlnet_single_block_samples, | |
| ) | |