Spaces:
Running
on
Zero
Running
on
Zero
| import nodes | |
| import node_helpers | |
| import torch | |
| import comfy.model_management | |
| import comfy.model_sampling | |
| import math | |
| class EmptyLTXVLatentVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/video/ltxv" | |
| def generate(self, width, height, length, batch_size=1): | |
| latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
| return ({"samples": latent}, ) | |
| class LTXVImgToVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "vae": ("VAE",), | |
| "image": ("IMAGE",), | |
| "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| CATEGORY = "conditioning/video_models" | |
| FUNCTION = "generate" | |
| def generate(self, positive, negative, image, vae, width, height, length, batch_size): | |
| pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) | |
| encode_pixels = pixels[:, :, :, :3] | |
| t = vae.encode(encode_pixels) | |
| positive = node_helpers.conditioning_set_values(positive, {"guiding_latent": t}) | |
| negative = node_helpers.conditioning_set_values(negative, {"guiding_latent": t}) | |
| latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
| latent[:, :, :t.shape[2]] = t | |
| return (positive, negative, {"samples": latent}, ) | |
| class LTXVConditioning: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING") | |
| RETURN_NAMES = ("positive", "negative") | |
| FUNCTION = "append" | |
| CATEGORY = "conditioning/video_models" | |
| def append(self, positive, negative, frame_rate): | |
| positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate}) | |
| negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate}) | |
| return (positive, negative) | |
| class ModelSamplingLTXV: | |
| def INPUT_TYPES(s): | |
| return {"required": { "model": ("MODEL",), | |
| "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
| }, | |
| "optional": {"latent": ("LATENT",), } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "advanced/model" | |
| def patch(self, model, max_shift, base_shift, latent=None): | |
| m = model.clone() | |
| if latent is None: | |
| tokens = 4096 | |
| else: | |
| tokens = math.prod(latent["samples"].shape[2:]) | |
| x1 = 1024 | |
| x2 = 4096 | |
| mm = (max_shift - base_shift) / (x2 - x1) | |
| b = base_shift - mm * x1 | |
| shift = (tokens) * mm + b | |
| sampling_base = comfy.model_sampling.ModelSamplingFlux | |
| sampling_type = comfy.model_sampling.CONST | |
| class ModelSamplingAdvanced(sampling_base, sampling_type): | |
| pass | |
| model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
| model_sampling.set_parameters(shift=shift) | |
| m.add_object_patch("model_sampling", model_sampling) | |
| return (m, ) | |
| class LTXVScheduler: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
| "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "stretch": ("BOOLEAN", { | |
| "default": True, | |
| "tooltip": "Stretch the sigmas to be in the range [terminal, 1]." | |
| }), | |
| "terminal": ( | |
| "FLOAT", | |
| { | |
| "default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01, | |
| "tooltip": "The terminal value of the sigmas after stretching." | |
| }, | |
| ), | |
| }, | |
| "optional": {"latent": ("LATENT",), } | |
| } | |
| RETURN_TYPES = ("SIGMAS",) | |
| CATEGORY = "sampling/custom_sampling/schedulers" | |
| FUNCTION = "get_sigmas" | |
| def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None): | |
| if latent is None: | |
| tokens = 4096 | |
| else: | |
| tokens = math.prod(latent["samples"].shape[2:]) | |
| sigmas = torch.linspace(1.0, 0.0, steps + 1) | |
| x1 = 1024 | |
| x2 = 4096 | |
| mm = (max_shift - base_shift) / (x2 - x1) | |
| b = base_shift - mm * x1 | |
| sigma_shift = (tokens) * mm + b | |
| power = 1 | |
| sigmas = torch.where( | |
| sigmas != 0, | |
| math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power), | |
| 0, | |
| ) | |
| # Stretch sigmas so that its final value matches the given terminal value. | |
| if stretch: | |
| non_zero_mask = sigmas != 0 | |
| non_zero_sigmas = sigmas[non_zero_mask] | |
| one_minus_z = 1.0 - non_zero_sigmas | |
| scale_factor = one_minus_z[-1] / (1.0 - terminal) | |
| stretched = 1.0 - (one_minus_z / scale_factor) | |
| sigmas[non_zero_mask] = stretched | |
| return (sigmas,) | |
| NODE_CLASS_MAPPINGS = { | |
| "EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, | |
| "LTXVImgToVideo": LTXVImgToVideo, | |
| "ModelSamplingLTXV": ModelSamplingLTXV, | |
| "LTXVConditioning": LTXVConditioning, | |
| "LTXVScheduler": LTXVScheduler, | |
| } | |