Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -24,7 +24,7 @@ CACHE_EXAMPLES = False #torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES"
|
|
| 24 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
| 25 |
USE_TORCH_COMPILE = False
|
| 26 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 27 |
-
PREVIEW_IMAGES =
|
| 28 |
|
| 29 |
dtype = torch.bfloat16
|
| 30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
@@ -47,10 +47,12 @@ if torch.cuda.is_available():
|
|
| 47 |
previewer = Previewer()
|
| 48 |
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
|
| 49 |
previewer.load_state_dict(previewer_state_dict)
|
| 50 |
-
def callback_prior(
|
|
|
|
| 51 |
output = previewer(latents)
|
| 52 |
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
|
| 53 |
-
|
|
|
|
| 54 |
callback_steps = 1
|
| 55 |
else:
|
| 56 |
previewer = None
|
|
@@ -84,7 +86,7 @@ def generate(
|
|
| 84 |
profile: gr.OAuthProfile | None = None,
|
| 85 |
) -> PIL.Image.Image:
|
| 86 |
|
| 87 |
-
|
| 88 |
prior_pipeline.to(device)
|
| 89 |
decoder_pipeline.to(device)
|
| 90 |
|
|
@@ -100,8 +102,8 @@ def generate(
|
|
| 100 |
guidance_scale=prior_guidance_scale,
|
| 101 |
num_images_per_prompt=num_images_per_prompt,
|
| 102 |
generator=generator,
|
| 103 |
-
|
| 104 |
-
|
| 105 |
)
|
| 106 |
print(prior_output)
|
| 107 |
if PREVIEW_IMAGES:
|
|
|
|
| 24 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
| 25 |
USE_TORCH_COMPILE = False
|
| 26 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 27 |
+
PREVIEW_IMAGES = True
|
| 28 |
|
| 29 |
dtype = torch.bfloat16
|
| 30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 47 |
previewer = Previewer()
|
| 48 |
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
|
| 49 |
previewer.load_state_dict(previewer_state_dict)
|
| 50 |
+
def callback_prior(pipeline, step_index, t, callback_kwargs):
|
| 51 |
+
latents = callback_kwargs["latents"]
|
| 52 |
output = previewer(latents)
|
| 53 |
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
|
| 54 |
+
callback_kwargs["preview_output"] = output
|
| 55 |
+
return callback_kwargs
|
| 56 |
callback_steps = 1
|
| 57 |
else:
|
| 58 |
previewer = None
|
|
|
|
| 86 |
profile: gr.OAuthProfile | None = None,
|
| 87 |
) -> PIL.Image.Image:
|
| 88 |
|
| 89 |
+
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
| 90 |
prior_pipeline.to(device)
|
| 91 |
decoder_pipeline.to(device)
|
| 92 |
|
|
|
|
| 102 |
guidance_scale=prior_guidance_scale,
|
| 103 |
num_images_per_prompt=num_images_per_prompt,
|
| 104 |
generator=generator,
|
| 105 |
+
callback_on_step_end=callback_prior,
|
| 106 |
+
callback_on_step_end_tensor_inputs=['latents']
|
| 107 |
)
|
| 108 |
print(prior_output)
|
| 109 |
if PREVIEW_IMAGES:
|