Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
fa8cc68
1
Parent(s):
097567a
Delete tests
Browse files
tests/inference/test_inference.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
import numpy
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import pytest
|
| 4 |
-
from pytest import fixture
|
| 5 |
-
import torch
|
| 6 |
-
from typing import Tuple
|
| 7 |
-
|
| 8 |
-
from sgm.inference.api import (
|
| 9 |
-
model_specs,
|
| 10 |
-
SamplingParams,
|
| 11 |
-
SamplingPipeline,
|
| 12 |
-
Sampler,
|
| 13 |
-
ModelArchitecture,
|
| 14 |
-
)
|
| 15 |
-
import sgm.inference.helpers as helpers
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
@pytest.mark.inference
|
| 19 |
-
class TestInference:
|
| 20 |
-
@fixture(scope="class", params=model_specs.keys())
|
| 21 |
-
def pipeline(self, request) -> SamplingPipeline:
|
| 22 |
-
pipeline = SamplingPipeline(request.param)
|
| 23 |
-
yield pipeline
|
| 24 |
-
del pipeline
|
| 25 |
-
torch.cuda.empty_cache()
|
| 26 |
-
|
| 27 |
-
@fixture(
|
| 28 |
-
scope="class",
|
| 29 |
-
params=[
|
| 30 |
-
[ModelArchitecture.SDXL_V1_BASE, ModelArchitecture.SDXL_V1_REFINER],
|
| 31 |
-
[ModelArchitecture.SDXL_V0_9_BASE, ModelArchitecture.SDXL_V0_9_REFINER],
|
| 32 |
-
],
|
| 33 |
-
ids=["SDXL_V1", "SDXL_V0_9"],
|
| 34 |
-
)
|
| 35 |
-
def sdxl_pipelines(self, request) -> Tuple[SamplingPipeline, SamplingPipeline]:
|
| 36 |
-
base_pipeline = SamplingPipeline(request.param[0])
|
| 37 |
-
refiner_pipeline = SamplingPipeline(request.param[1])
|
| 38 |
-
yield base_pipeline, refiner_pipeline
|
| 39 |
-
del base_pipeline
|
| 40 |
-
del refiner_pipeline
|
| 41 |
-
torch.cuda.empty_cache()
|
| 42 |
-
|
| 43 |
-
def create_init_image(self, h, w):
|
| 44 |
-
image_array = numpy.random.rand(h, w, 3) * 255
|
| 45 |
-
image = Image.fromarray(image_array.astype("uint8")).convert("RGB")
|
| 46 |
-
return helpers.get_input_image_tensor(image)
|
| 47 |
-
|
| 48 |
-
@pytest.mark.parametrize("sampler_enum", Sampler)
|
| 49 |
-
def test_txt2img(self, pipeline: SamplingPipeline, sampler_enum):
|
| 50 |
-
output = pipeline.text_to_image(
|
| 51 |
-
params=SamplingParams(sampler=sampler_enum.value, steps=10),
|
| 52 |
-
prompt="A professional photograph of an astronaut riding a pig",
|
| 53 |
-
negative_prompt="",
|
| 54 |
-
samples=1,
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
assert output is not None
|
| 58 |
-
|
| 59 |
-
@pytest.mark.parametrize("sampler_enum", Sampler)
|
| 60 |
-
def test_img2img(self, pipeline: SamplingPipeline, sampler_enum):
|
| 61 |
-
output = pipeline.image_to_image(
|
| 62 |
-
params=SamplingParams(sampler=sampler_enum.value, steps=10),
|
| 63 |
-
image=self.create_init_image(pipeline.specs.height, pipeline.specs.width),
|
| 64 |
-
prompt="A professional photograph of an astronaut riding a pig",
|
| 65 |
-
negative_prompt="",
|
| 66 |
-
samples=1,
|
| 67 |
-
)
|
| 68 |
-
assert output is not None
|
| 69 |
-
|
| 70 |
-
@pytest.mark.parametrize("sampler_enum", Sampler)
|
| 71 |
-
@pytest.mark.parametrize(
|
| 72 |
-
"use_init_image", [True, False], ids=["img2img", "txt2img"]
|
| 73 |
-
)
|
| 74 |
-
def test_sdxl_with_refiner(
|
| 75 |
-
self,
|
| 76 |
-
sdxl_pipelines: Tuple[SamplingPipeline, SamplingPipeline],
|
| 77 |
-
sampler_enum,
|
| 78 |
-
use_init_image,
|
| 79 |
-
):
|
| 80 |
-
base_pipeline, refiner_pipeline = sdxl_pipelines
|
| 81 |
-
if use_init_image:
|
| 82 |
-
output = base_pipeline.image_to_image(
|
| 83 |
-
params=SamplingParams(sampler=sampler_enum.value, steps=10),
|
| 84 |
-
image=self.create_init_image(
|
| 85 |
-
base_pipeline.specs.height, base_pipeline.specs.width
|
| 86 |
-
),
|
| 87 |
-
prompt="A professional photograph of an astronaut riding a pig",
|
| 88 |
-
negative_prompt="",
|
| 89 |
-
samples=1,
|
| 90 |
-
return_latents=True,
|
| 91 |
-
)
|
| 92 |
-
else:
|
| 93 |
-
output = base_pipeline.text_to_image(
|
| 94 |
-
params=SamplingParams(sampler=sampler_enum.value, steps=10),
|
| 95 |
-
prompt="A professional photograph of an astronaut riding a pig",
|
| 96 |
-
negative_prompt="",
|
| 97 |
-
samples=1,
|
| 98 |
-
return_latents=True,
|
| 99 |
-
)
|
| 100 |
-
|
| 101 |
-
assert isinstance(output, (tuple, list))
|
| 102 |
-
samples, samples_z = output
|
| 103 |
-
assert samples is not None
|
| 104 |
-
assert samples_z is not None
|
| 105 |
-
refiner_pipeline.refiner(
|
| 106 |
-
params=SamplingParams(sampler=sampler_enum.value, steps=10),
|
| 107 |
-
image=samples_z,
|
| 108 |
-
prompt="A professional photograph of an astronaut riding a pig",
|
| 109 |
-
negative_prompt="",
|
| 110 |
-
samples=1,
|
| 111 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|