Spaces:
Runtime error
Runtime error
| import logging | |
| from logging import Logger | |
| import os | |
| from fastapi import Depends | |
| from common.configuration import Configuration | |
| from components.llm.common import LlmParams | |
| from components.llm.deepinfra_api import DeepInfraApi | |
| from components.services.dataset import DatasetService | |
| from components.embedding_extraction import EmbeddingExtractor | |
| from components.datasets.dispatcher import Dispatcher | |
| from components.services.document import DocumentService | |
| from components.services.acronym import AcronymService | |
| from components.services.llm_config import LLMConfigService | |
| from typing import Annotated | |
| from sqlalchemy.orm import sessionmaker, Session | |
| from common.db import session_factory | |
| from components.services.llm_prompt import LlmPromptService | |
| def get_config() -> Configuration: | |
| return Configuration(os.environ.get('CONFIG_PATH', 'config_dev.yaml')) | |
| def get_db() -> sessionmaker: | |
| return session_factory | |
| def get_logger() -> Logger: | |
| return logging.getLogger(__name__) | |
| def get_embedding_extractor(config: Annotated[Configuration, Depends(get_config)]) -> EmbeddingExtractor: | |
| return EmbeddingExtractor( | |
| config.db_config.faiss.model_embedding_path, | |
| config.db_config.faiss.device, | |
| ) | |
| def get_dataset_service( | |
| vectorizer: Annotated[EmbeddingExtractor, Depends(get_embedding_extractor)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| db: Annotated[sessionmaker, Depends(get_db)] | |
| ) -> DatasetService: | |
| return DatasetService(vectorizer, config, db) | |
| def get_dispatcher(vectorizer: Annotated[EmbeddingExtractor, Depends(get_embedding_extractor)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| logger: Annotated[Logger, Depends(get_logger)], | |
| dataset_service: Annotated[DatasetService, Depends(get_dataset_service)]) -> Dispatcher: | |
| return Dispatcher(vectorizer, config, logger, dataset_service) | |
| def get_acronym_service(db: Annotated[Session, Depends(get_db)]) -> AcronymService: | |
| return AcronymService(db) | |
| def get_document_service(dataset_service: Annotated[DatasetService, Depends(get_dataset_service)], | |
| config: Annotated[Configuration, Depends(get_config)], | |
| db: Annotated[sessionmaker, Depends(get_db)]) -> DocumentService: | |
| return DocumentService(dataset_service, config, db) | |
| def get_llm_config_service(db: Annotated[Session, Depends(get_db)]) -> LLMConfigService: | |
| return LLMConfigService(db) | |
| def get_llm_service(config: Annotated[Configuration, Depends(get_config)]) -> DeepInfraApi: | |
| llm_params = LlmParams(**{ | |
| "url": config.llm_config.base_url, | |
| "model": config.llm_config.model, | |
| "tokenizer": config.llm_config.tokenizer, | |
| "type": "deepinfra", | |
| "default": True, | |
| "predict_params": None, #должны задаваться при каждом запросе | |
| "api_key": os.environ.get(config.llm_config.api_key_env), | |
| "context_length": 128000 | |
| }) | |
| return DeepInfraApi(params=llm_params) | |
| def get_llm_prompt_service(db: Annotated[Session, Depends(get_db)]) -> LlmPromptService: | |
| return LlmPromptService(db) |