Spaces:
Runtime error
Runtime error
update
Browse files- common/decorators.py +8 -0
- components/embedding_extraction.py +21 -7
- components/llm/deepinfra_api.py +42 -2
- routes/llm.py +96 -25
common/decorators.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def singleton(cls):
|
| 3 |
+
instances = {}
|
| 4 |
+
def get_instance(*args, **kwargs):
|
| 5 |
+
if cls not in instances:
|
| 6 |
+
instances[cls] = cls(*args, **kwargs)
|
| 7 |
+
return instances[cls]
|
| 8 |
+
return get_instance
|
components/embedding_extraction.py
CHANGED
|
@@ -6,23 +6,27 @@ import torch
|
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from torch.utils.data import DataLoader
|
| 8 |
from transformers import (AutoModel, AutoTokenizer, BatchEncoding,
|
| 9 |
-
XLMRobertaModel)
|
| 10 |
from transformers.modeling_outputs import \
|
| 11 |
BaseModelOutputWithPoolingAndCrossAttentions as EncoderOutput
|
| 12 |
|
| 13 |
-
|
| 14 |
|
|
|
|
| 15 |
|
|
|
|
| 16 |
class EmbeddingExtractor:
|
| 17 |
"""Класс обрабатывает текст вопроса и возвращает embedding"""
|
| 18 |
|
| 19 |
def __init__(
|
| 20 |
self,
|
| 21 |
-
model_id: str,
|
| 22 |
device: str | torch.device | None = None,
|
| 23 |
batch_size: int = 1,
|
| 24 |
do_normalization: bool = True,
|
| 25 |
max_len: int = 510,
|
|
|
|
|
|
|
| 26 |
):
|
| 27 |
"""
|
| 28 |
Класс, соединяющий в себе модель, токенизатор и параметры векторизации.
|
|
@@ -33,6 +37,8 @@ class EmbeddingExtractor:
|
|
| 33 |
batch_size: Размер батча (по умолчанию - 1).
|
| 34 |
do_normalization: Нормировать ли вектора (по умолчанию - True).
|
| 35 |
max_len: Максимальная длина текста в токенах (по умолчанию - 510).
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
if device is None:
|
| 38 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
@@ -40,11 +46,19 @@ class EmbeddingExtractor:
|
|
| 40 |
device = torch.device(device)
|
| 41 |
|
| 42 |
self.device = device
|
|
|
|
| 43 |
# Инициализация модели
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
self.
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
self.model.eval()
|
| 49 |
self.model.share_memory()
|
| 50 |
|
|
|
|
| 6 |
import torch.nn.functional as F
|
| 7 |
from torch.utils.data import DataLoader
|
| 8 |
from transformers import (AutoModel, AutoTokenizer, BatchEncoding,
|
| 9 |
+
XLMRobertaModel, PreTrainedTokenizer, PreTrainedTokenizerFast)
|
| 10 |
from transformers.modeling_outputs import \
|
| 11 |
BaseModelOutputWithPoolingAndCrossAttentions as EncoderOutput
|
| 12 |
|
| 13 |
+
from common.decorators import singleton
|
| 14 |
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
@singleton
|
| 18 |
class EmbeddingExtractor:
|
| 19 |
"""Класс обрабатывает текст вопроса и возвращает embedding"""
|
| 20 |
|
| 21 |
def __init__(
|
| 22 |
self,
|
| 23 |
+
model_id: str | None,
|
| 24 |
device: str | torch.device | None = None,
|
| 25 |
batch_size: int = 1,
|
| 26 |
do_normalization: bool = True,
|
| 27 |
max_len: int = 510,
|
| 28 |
+
model: XLMRobertaModel = None,
|
| 29 |
+
tokenizer: PreTrainedTokenizer | PreTrainedTokenizerFast = None
|
| 30 |
):
|
| 31 |
"""
|
| 32 |
Класс, соединяющий в себе модель, токенизатор и параметры векторизации.
|
|
|
|
| 37 |
batch_size: Размер батча (по умолчанию - 1).
|
| 38 |
do_normalization: Нормировать ли вектора (по умолчанию - True).
|
| 39 |
max_len: Максимальная длина текста в токенах (по умолчанию - 510).
|
| 40 |
+
model: Экземпляр загруженной модели.
|
| 41 |
+
tokenizer: Экземпляр загруженного токенизатора.
|
| 42 |
"""
|
| 43 |
if device is None:
|
| 44 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 46 |
device = torch.device(device)
|
| 47 |
|
| 48 |
self.device = device
|
| 49 |
+
|
| 50 |
# Инициализация модели
|
| 51 |
+
if model is not None and tokenizer is not None:
|
| 52 |
+
self.tokenizer = tokenizer
|
| 53 |
+
self.model = model
|
| 54 |
+
elif model_id is not None:
|
| 55 |
+
print('EmbeddingExtractor: model loading '+model_id+' to '+str(self.device))
|
| 56 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, local_files_only=True)
|
| 57 |
+
self.model: XLMRobertaModel = AutoModel.from_pretrained(model_id, local_files_only=True).to(
|
| 58 |
+
self.device
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
print('EmbeddingExtractor: model loaded')
|
| 62 |
self.model.eval()
|
| 63 |
self.model.share_memory()
|
| 64 |
|
components/llm/deepinfra_api.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import json
|
| 2 |
-
from typing import Optional, List
|
| 3 |
import httpx
|
| 4 |
import logging
|
| 5 |
from transformers import AutoTokenizer
|
|
@@ -286,7 +286,6 @@ class DeepInfraApi(LlmApi):
|
|
| 286 |
try:
|
| 287 |
# Парсим JSON из строки
|
| 288 |
data = json.loads(line[len("data: "):].strip())
|
| 289 |
-
print(data)
|
| 290 |
if data == "[DONE]": # Конец потока
|
| 291 |
break
|
| 292 |
if "choices" in data and data["choices"]:
|
|
@@ -298,6 +297,47 @@ class DeepInfraApi(LlmApi):
|
|
| 298 |
|
| 299 |
return generated_text.strip()
|
| 300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
async def predict(self, prompt: str, system_prompt: str) -> str:
|
| 302 |
"""
|
| 303 |
Выполняет запрос к API и возвращает результат.
|
|
|
|
| 1 |
import json
|
| 2 |
+
from typing import AsyncGenerator, Optional, List
|
| 3 |
import httpx
|
| 4 |
import logging
|
| 5 |
from transformers import AutoTokenizer
|
|
|
|
| 286 |
try:
|
| 287 |
# Парсим JSON из строки
|
| 288 |
data = json.loads(line[len("data: "):].strip())
|
|
|
|
| 289 |
if data == "[DONE]": # Конец потока
|
| 290 |
break
|
| 291 |
if "choices" in data and data["choices"]:
|
|
|
|
| 297 |
|
| 298 |
return generated_text.strip()
|
| 299 |
|
| 300 |
+
async def get_predict_chat_generator(self, request: ChatRequest, system_prompt: str,
|
| 301 |
+
params: LlmPredictParams) -> AsyncGenerator[str, None]:
|
| 302 |
+
"""
|
| 303 |
+
Выполняет потоковый запрос к API и возвращает токены по мере их генерации.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
request (ChatRequest): История чата.
|
| 307 |
+
system_prompt (str): Системный промпт.
|
| 308 |
+
params (LlmPredictParams): Параметры предсказания.
|
| 309 |
+
|
| 310 |
+
Yields:
|
| 311 |
+
str: Токены ответа LLM.
|
| 312 |
+
"""
|
| 313 |
+
params
|
| 314 |
+
async with httpx.AsyncClient() as client:
|
| 315 |
+
request_data = self.create_chat_request(request, system_prompt, params)
|
| 316 |
+
request_data["stream"] = True
|
| 317 |
+
|
| 318 |
+
async with client.stream(
|
| 319 |
+
"POST",
|
| 320 |
+
f"{self.params.url}/v1/openai/chat/completions",
|
| 321 |
+
json=request_data,
|
| 322 |
+
headers=super().create_headers()
|
| 323 |
+
) as response:
|
| 324 |
+
if response.status_code != 200:
|
| 325 |
+
error_content = await response.aread()
|
| 326 |
+
raise Exception(f"API error: {error_content.decode('utf-8')}")
|
| 327 |
+
|
| 328 |
+
async for line in response.aiter_lines():
|
| 329 |
+
if line.startswith("data: "):
|
| 330 |
+
try:
|
| 331 |
+
data = json.loads(line[len("data: "):].strip())
|
| 332 |
+
if data == "[DONE]":
|
| 333 |
+
break
|
| 334 |
+
if "choices" in data and data["choices"]:
|
| 335 |
+
token_value = data["choices"][0].get("delta", {}).get("content", "")
|
| 336 |
+
if token_value:
|
| 337 |
+
yield token_value
|
| 338 |
+
except json.JSONDecodeError:
|
| 339 |
+
continue
|
| 340 |
+
|
| 341 |
async def predict(self, prompt: str, system_prompt: str) -> str:
|
| 342 |
"""
|
| 343 |
Выполняет запрос к API и возвращает результат.
|
routes/llm.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import os
|
| 3 |
-
from typing import Annotated, Optional
|
| 4 |
from uuid import UUID
|
| 5 |
|
|
|
|
|
|
|
| 6 |
from components.services.dataset import DatasetService
|
| 7 |
from components.services.entity import EntityService
|
| 8 |
from fastapi import APIRouter, Depends, HTTPException
|
|
@@ -42,6 +45,97 @@ llm_params = LlmParams(
|
|
| 42 |
# TODO: унести в DI
|
| 43 |
llm_api = DeepInfraApi(params=llm_params)
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
@router.post("/chat")
|
| 47 |
async def chat(
|
|
@@ -68,29 +162,6 @@ async def chat(
|
|
| 68 |
stop=[],
|
| 69 |
)
|
| 70 |
|
| 71 |
-
# TODO: Вынести
|
| 72 |
-
def get_last_user_message(chat_request: ChatRequest) -> Optional[Message]:
|
| 73 |
-
return next(
|
| 74 |
-
(
|
| 75 |
-
msg
|
| 76 |
-
for msg in reversed(chat_request.history)
|
| 77 |
-
if msg.role == "user"
|
| 78 |
-
and (msg.searchResults is None or not msg.searchResults)
|
| 79 |
-
),
|
| 80 |
-
None,
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
def insert_search_results_to_message(
|
| 84 |
-
chat_request: ChatRequest, new_content: str
|
| 85 |
-
) -> bool:
|
| 86 |
-
for msg in reversed(chat_request.history):
|
| 87 |
-
if msg.role == "user" and (
|
| 88 |
-
msg.searchResults is None or not msg.searchResults
|
| 89 |
-
):
|
| 90 |
-
msg.content = new_content
|
| 91 |
-
return True
|
| 92 |
-
return False
|
| 93 |
-
|
| 94 |
last_query = get_last_user_message(request)
|
| 95 |
search_result = None
|
| 96 |
|
|
@@ -126,4 +197,4 @@ async def chat(
|
|
| 126 |
logger.error(
|
| 127 |
f"Error processing LLM request: {str(e)}", stack_info=True, stacklevel=10
|
| 128 |
)
|
| 129 |
-
return {"error": str(e)}
|
|
|
|
| 1 |
+
import json
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
+
from typing import Annotated, AsyncGenerator, Optional
|
| 5 |
from uuid import UUID
|
| 6 |
|
| 7 |
+
from fastapi.responses import StreamingResponse
|
| 8 |
+
|
| 9 |
from components.services.dataset import DatasetService
|
| 10 |
from components.services.entity import EntityService
|
| 11 |
from fastapi import APIRouter, Depends, HTTPException
|
|
|
|
| 45 |
# TODO: унести в DI
|
| 46 |
llm_api = DeepInfraApi(params=llm_params)
|
| 47 |
|
| 48 |
+
# TODO: Вынести
|
| 49 |
+
def get_last_user_message(chat_request: ChatRequest) -> Optional[Message]:
|
| 50 |
+
return next(
|
| 51 |
+
(
|
| 52 |
+
msg
|
| 53 |
+
for msg in reversed(chat_request.history)
|
| 54 |
+
if msg.role == "user"
|
| 55 |
+
and (msg.searchResults is None or not msg.searchResults)
|
| 56 |
+
),
|
| 57 |
+
None,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
def insert_search_results_to_message(
|
| 61 |
+
chat_request: ChatRequest, new_content: str
|
| 62 |
+
) -> bool:
|
| 63 |
+
for msg in reversed(chat_request.history):
|
| 64 |
+
if msg.role == "user" and (
|
| 65 |
+
msg.searchResults is None or not msg.searchResults
|
| 66 |
+
):
|
| 67 |
+
msg.content = new_content
|
| 68 |
+
return True
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
async def sse_generator(request: ChatRequest, llm_api: DeepInfraApi, system_prompt: str,
|
| 72 |
+
predict_params: LlmPredictParams,
|
| 73 |
+
dataset_service: DatasetService,
|
| 74 |
+
entity_service: EntityService) -> AsyncGenerator[str, None]:
|
| 75 |
+
"""
|
| 76 |
+
Генератор для стриминга ответа LLM через SSE.
|
| 77 |
+
"""
|
| 78 |
+
# Обработка поиска
|
| 79 |
+
last_query = get_last_user_message(request)
|
| 80 |
+
if last_query:
|
| 81 |
+
dataset = dataset_service.get_current_dataset()
|
| 82 |
+
if dataset is None:
|
| 83 |
+
raise HTTPException(status_code=400, detail="Dataset not found")
|
| 84 |
+
_, scores, chunk_ids = entity_service.search_similar(last_query.content, dataset.id)
|
| 85 |
+
chunks = entity_service.chunk_repository.get_chunks_by_ids(chunk_ids)
|
| 86 |
+
text_chunks = entity_service.build_text(chunks, scores)
|
| 87 |
+
search_results_event = {
|
| 88 |
+
"event": "search_results",
|
| 89 |
+
"data": f"\n<search-results>\n{text_chunks}\n</search-results>"
|
| 90 |
+
}
|
| 91 |
+
yield f"data: {json.dumps(search_results_event, ensure_ascii=False)}\n\n"
|
| 92 |
+
|
| 93 |
+
new_message = f'{last_query.content}\n<search-results>\n{text_chunks}\n</search-results>'
|
| 94 |
+
insert_search_results_to_message(request, new_message)
|
| 95 |
+
|
| 96 |
+
# Стриминг токенов ответа
|
| 97 |
+
async for token in llm_api.get_predict_chat_generator(request, system_prompt, predict_params):
|
| 98 |
+
token_event = {"event": "token", "data": token}
|
| 99 |
+
logger.info(f"Streaming token: {token}")
|
| 100 |
+
yield f"data: {json.dumps(token_event, ensure_ascii=False)}\n\n"
|
| 101 |
+
|
| 102 |
+
# Финальное событие
|
| 103 |
+
yield "data: {\"event\": \"done\"}\n\n"
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@router.post("/chat/stream")
|
| 107 |
+
async def chat_stream(
|
| 108 |
+
request: ChatRequest,
|
| 109 |
+
config: Annotated[Configuration, Depends(DI.get_config)],
|
| 110 |
+
llm_api: Annotated[DeepInfraApi, Depends(DI.get_llm_service)],
|
| 111 |
+
prompt_service: Annotated[LlmPromptService, Depends(DI.get_llm_prompt_service)],
|
| 112 |
+
llm_config_service: Annotated[LLMConfigService, Depends(DI.get_llm_config_service)],
|
| 113 |
+
entity_service: Annotated[EntityService, Depends(DI.get_entity_service)],
|
| 114 |
+
dataset_service: Annotated[DatasetService, Depends(DI.get_dataset_service)],
|
| 115 |
+
):
|
| 116 |
+
try:
|
| 117 |
+
p = llm_config_service.get_default()
|
| 118 |
+
system_prompt = prompt_service.get_default()
|
| 119 |
+
|
| 120 |
+
predict_params = LlmPredictParams(
|
| 121 |
+
temperature=p.temperature,
|
| 122 |
+
top_p=p.top_p,
|
| 123 |
+
min_p=p.min_p,
|
| 124 |
+
seed=p.seed,
|
| 125 |
+
frequency_penalty=p.frequency_penalty,
|
| 126 |
+
presence_penalty=p.presence_penalty,
|
| 127 |
+
n_predict=p.n_predict,
|
| 128 |
+
stop=[],
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
return StreamingResponse(
|
| 132 |
+
sse_generator(request, llm_api, system_prompt.text, predict_params, dataset_service, entity_service),
|
| 133 |
+
media_type="text/event-stream",
|
| 134 |
+
headers={"Cache-Control": "no-cache", "Connection": "keep-alive"}
|
| 135 |
+
)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
logger.error(f"Error in SSE chat stream: {str(e)}", stack_info=True)
|
| 138 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 139 |
|
| 140 |
@router.post("/chat")
|
| 141 |
async def chat(
|
|
|
|
| 162 |
stop=[],
|
| 163 |
)
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
last_query = get_last_user_message(request)
|
| 166 |
search_result = None
|
| 167 |
|
|
|
|
| 197 |
logger.error(
|
| 198 |
f"Error processing LLM request: {str(e)}", stack_info=True, stacklevel=10
|
| 199 |
)
|
| 200 |
+
return {"error": str(e)}
|