Spaces:
Runtime error
Runtime error
Commit
·
0ebf72e
1
Parent(s):
3d0f64f
Fix: Add OpenCV system dependencies
Browse files
app.py
CHANGED
|
@@ -1,86 +1,108 @@
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse
|
|
|
|
| 3 |
from ultralytics import YOLO
|
| 4 |
import numpy as np
|
| 5 |
import cv2
|
| 6 |
from io import BytesIO
|
| 7 |
from PIL import Image
|
| 8 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI(title="Car Parts & Damage Detection API")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Load YOLO models
|
| 13 |
try:
|
|
|
|
| 14 |
car_part_model = YOLO("car_part_detector_model.pt")
|
|
|
|
|
|
|
| 15 |
damage_model = YOLO("damage_general_model.pt")
|
|
|
|
| 16 |
except Exception as e:
|
|
|
|
| 17 |
raise RuntimeError(f"Failed to load models: {str(e)}")
|
| 18 |
|
| 19 |
def image_to_base64(img: np.ndarray) -> str:
|
| 20 |
-
"""Convert numpy image to base64 string
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
@app.post("/predict", summary="Run inference on an image for car parts and damage")
|
| 25 |
async def predict(file: UploadFile = File(...)):
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
Returns annotated images as base64 strings and text descriptions.
|
| 29 |
-
"""
|
| 30 |
try:
|
| 31 |
-
# Read and process image
|
| 32 |
contents = await file.read()
|
| 33 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 34 |
img = np.array(image)
|
|
|
|
| 35 |
|
| 36 |
-
# Initialize default blank images (gray placeholder)
|
| 37 |
blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
|
| 38 |
car_part_img = blank_img.copy()
|
| 39 |
damage_img = blank_img.copy()
|
| 40 |
-
|
| 41 |
-
# Initialize text results
|
| 42 |
car_part_text = "Car Parts: No detections"
|
| 43 |
damage_text = "Damage: No detections"
|
| 44 |
|
| 45 |
-
# Process car parts detection
|
| 46 |
try:
|
|
|
|
| 47 |
car_part_results = car_part_model(img)[0]
|
| 48 |
if car_part_results.boxes:
|
| 49 |
-
car_part_img = car_part_results.plot()[..., ::-1]
|
| 50 |
car_part_text = "Car Parts:\n" + "\n".join(
|
| 51 |
f"- {car_part_results.names[int(cls)]} ({conf:.2f})"
|
| 52 |
for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls)
|
| 53 |
)
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
car_part_text = f"Car Parts: Error: {str(e)}"
|
|
|
|
| 56 |
|
| 57 |
-
# Process damage detection
|
| 58 |
try:
|
|
|
|
| 59 |
damage_results = damage_model(img)[0]
|
| 60 |
if damage_results.boxes:
|
| 61 |
-
damage_img = damage_results.plot()[..., ::-1]
|
| 62 |
damage_text = "Damage:\n" + "\n".join(
|
| 63 |
f"- {damage_results.names[int(cls)]} ({conf:.2f})"
|
| 64 |
for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls)
|
| 65 |
)
|
|
|
|
| 66 |
except Exception as e:
|
| 67 |
damage_text = f"Damage: Error: {str(e)}"
|
|
|
|
| 68 |
|
| 69 |
-
# Convert output images to base64
|
| 70 |
car_part_img_base64 = image_to_base64(car_part_img)
|
| 71 |
damage_img_base64 = image_to_base64(damage_img)
|
| 72 |
-
|
| 73 |
return JSONResponse({
|
| 74 |
"car_part_image": car_part_img_base64,
|
| 75 |
"car_part_text": car_part_text,
|
| 76 |
"damage_image": damage_img_base64,
|
| 77 |
"damage_text": damage_text
|
| 78 |
})
|
| 79 |
-
|
| 80 |
except Exception as e:
|
|
|
|
| 81 |
raise HTTPException(status_code=500, detail=f"Inference error: {str(e)}")
|
| 82 |
|
| 83 |
@app.get("/", summary="Health check")
|
| 84 |
async def root():
|
| 85 |
"""Check if the API is running."""
|
|
|
|
| 86 |
return {"message": "Car Parts & Damage Detection API is running"}
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
+
import logging
|
| 4 |
from ultralytics import YOLO
|
| 5 |
import numpy as np
|
| 6 |
import cv2
|
| 7 |
from io import BytesIO
|
| 8 |
from PIL import Image
|
| 9 |
import base64
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Setup logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
app = FastAPI(title="Car Parts & Damage Detection API")
|
| 17 |
|
| 18 |
+
# Log model file presence
|
| 19 |
+
model_files = ["car_part_detector_model.pt", "damage_general_model.pt"]
|
| 20 |
+
for model_file in model_files:
|
| 21 |
+
if os.path.exists(model_file):
|
| 22 |
+
logger.info(f"Model file found: {model_file}")
|
| 23 |
+
else:
|
| 24 |
+
logger.error(f"Model file missing: {model_file}")
|
| 25 |
+
|
| 26 |
# Load YOLO models
|
| 27 |
try:
|
| 28 |
+
logger.info("Loading car part model...")
|
| 29 |
car_part_model = YOLO("car_part_detector_model.pt")
|
| 30 |
+
logger.info("Car part model loaded successfully")
|
| 31 |
+
logger.info("Loading damage model...")
|
| 32 |
damage_model = YOLO("damage_general_model.pt")
|
| 33 |
+
logger.info("Damage model loaded successfully")
|
| 34 |
except Exception as e:
|
| 35 |
+
logger.error(f"Failed to load models: {str(e)}")
|
| 36 |
raise RuntimeError(f"Failed to load models: {str(e)}")
|
| 37 |
|
| 38 |
def image_to_base64(img: np.ndarray) -> str:
|
| 39 |
+
"""Convert numpy image to base64 string."""
|
| 40 |
+
try:
|
| 41 |
+
_, buffer = cv2.imencode(".png", img)
|
| 42 |
+
return base64.b64encode(buffer).decode("utf-8")
|
| 43 |
+
except Exception as e:
|
| 44 |
+
logger.error(f"Error encoding image to base64: {str(e)}")
|
| 45 |
+
raise
|
| 46 |
|
| 47 |
@app.post("/predict", summary="Run inference on an image for car parts and damage")
|
| 48 |
async def predict(file: UploadFile = File(...)):
|
| 49 |
+
"""Upload an image and get car parts and damage detection results."""
|
| 50 |
+
logger.info("Received image upload")
|
|
|
|
|
|
|
| 51 |
try:
|
|
|
|
| 52 |
contents = await file.read()
|
| 53 |
image = Image.open(BytesIO(contents)).convert("RGB")
|
| 54 |
img = np.array(image)
|
| 55 |
+
logger.info(f"Image loaded: shape={img.shape}")
|
| 56 |
|
|
|
|
| 57 |
blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
|
| 58 |
car_part_img = blank_img.copy()
|
| 59 |
damage_img = blank_img.copy()
|
|
|
|
|
|
|
| 60 |
car_part_text = "Car Parts: No detections"
|
| 61 |
damage_text = "Damage: No detections"
|
| 62 |
|
|
|
|
| 63 |
try:
|
| 64 |
+
logger.info("Running car part detection...")
|
| 65 |
car_part_results = car_part_model(img)[0]
|
| 66 |
if car_part_results.boxes:
|
| 67 |
+
car_part_img = car_part_results.plot()[..., ::-1]
|
| 68 |
car_part_text = "Car Parts:\n" + "\n".join(
|
| 69 |
f"- {car_part_results.names[int(cls)]} ({conf:.2f})"
|
| 70 |
for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls)
|
| 71 |
)
|
| 72 |
+
logger.info("Car part detection completed")
|
| 73 |
except Exception as e:
|
| 74 |
car_part_text = f"Car Parts: Error: {str(e)}"
|
| 75 |
+
logger.error(f"Car part detection error: {str(e)}")
|
| 76 |
|
|
|
|
| 77 |
try:
|
| 78 |
+
logger.info("Running damage detection...")
|
| 79 |
damage_results = damage_model(img)[0]
|
| 80 |
if damage_results.boxes:
|
| 81 |
+
damage_img = damage_results.plot()[..., ::-1]
|
| 82 |
damage_text = "Damage:\n" + "\n".join(
|
| 83 |
f"- {damage_results.names[int(cls)]} ({conf:.2f})"
|
| 84 |
for conf, cls in zip(damage_results.boxes.conf, damage_results.boxes.cls)
|
| 85 |
)
|
| 86 |
+
logger.info("Damage detection completed")
|
| 87 |
except Exception as e:
|
| 88 |
damage_text = f"Damage: Error: {str(e)}"
|
| 89 |
+
logger.error(f"Damage detection error: {str(e)}")
|
| 90 |
|
|
|
|
| 91 |
car_part_img_base64 = image_to_base64(car_part_img)
|
| 92 |
damage_img_base64 = image_to_base64(damage_img)
|
| 93 |
+
logger.info("Returning prediction results")
|
| 94 |
return JSONResponse({
|
| 95 |
"car_part_image": car_part_img_base64,
|
| 96 |
"car_part_text": car_part_text,
|
| 97 |
"damage_image": damage_img_base64,
|
| 98 |
"damage_text": damage_text
|
| 99 |
})
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
+
logger.error(f"Inference error: {str(e)}")
|
| 102 |
raise HTTPException(status_code=500, detail=f"Inference error: {str(e)}")
|
| 103 |
|
| 104 |
@app.get("/", summary="Health check")
|
| 105 |
async def root():
|
| 106 |
"""Check if the API is running."""
|
| 107 |
+
logger.info("Health check accessed")
|
| 108 |
return {"message": "Car Parts & Damage Detection API is running"}
|