Spaces:
Runtime error
Runtime error
MUSSIE1212
commited on
Commit
·
c36fae9
1
Parent(s):
a0b1c85
Refactored app.py for single damage model analysis and removed unused car_part_detector_model.pt
Browse files- __pycache__/app.cpython-312.pyc +0 -0
- app.py +14 -36
- car_part_detector_model.pt +0 -3
__pycache__/app.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-312.pyc and b/__pycache__/app.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -13,27 +13,24 @@ import os
|
|
| 13 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
-
app = FastAPI(title="
|
| 17 |
|
| 18 |
# Log model file presence
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
# Load YOLO
|
| 27 |
try:
|
| 28 |
-
logger.info("Loading car part model...")
|
| 29 |
-
car_part_model = YOLO("car_part_detector_model.pt")
|
| 30 |
-
logger.info("Car part model loaded successfully")
|
| 31 |
logger.info("Loading damage model...")
|
| 32 |
-
damage_model = YOLO(
|
| 33 |
logger.info("Damage model loaded successfully")
|
| 34 |
except Exception as e:
|
| 35 |
-
logger.error(f"Failed to load
|
| 36 |
-
raise RuntimeError(f"Failed to load
|
| 37 |
|
| 38 |
def image_to_base64(img: np.ndarray) -> str:
|
| 39 |
"""Convert numpy image to base64 string."""
|
|
@@ -44,9 +41,9 @@ def image_to_base64(img: np.ndarray) -> str:
|
|
| 44 |
logger.error(f"Error encoding image to base64: {str(e)}")
|
| 45 |
raise
|
| 46 |
|
| 47 |
-
@app.post("/predict", summary="Run inference on an image for
|
| 48 |
async def predict(file: UploadFile = File(...)):
|
| 49 |
-
"""Upload an image and get
|
| 50 |
logger.info("Received image upload")
|
| 51 |
try:
|
| 52 |
contents = await file.read()
|
|
@@ -55,25 +52,9 @@ async def predict(file: UploadFile = File(...)):
|
|
| 55 |
logger.info(f"Image loaded: shape={img.shape}")
|
| 56 |
|
| 57 |
blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
|
| 58 |
-
car_part_img = blank_img.copy()
|
| 59 |
damage_img = blank_img.copy()
|
| 60 |
-
car_part_text = "Car Parts: No detections"
|
| 61 |
damage_text = "Damage: No detections"
|
| 62 |
|
| 63 |
-
try:
|
| 64 |
-
logger.info("Running car part detection...")
|
| 65 |
-
car_part_results = car_part_model(img)[0]
|
| 66 |
-
if car_part_results.boxes:
|
| 67 |
-
car_part_img = car_part_results.plot()[..., ::-1]
|
| 68 |
-
car_part_text = "Car Parts:\n" + "\n".join(
|
| 69 |
-
f"- {car_part_results.names[int(cls)]} ({conf:.2f})"
|
| 70 |
-
for conf, cls in zip(car_part_results.boxes.conf, car_part_results.boxes.cls)
|
| 71 |
-
)
|
| 72 |
-
logger.info("Car part detection completed")
|
| 73 |
-
except Exception as e:
|
| 74 |
-
car_part_text = f"Car Parts: Error: {str(e)}"
|
| 75 |
-
logger.error(f"Car part detection error: {str(e)}")
|
| 76 |
-
|
| 77 |
try:
|
| 78 |
logger.info("Running damage detection...")
|
| 79 |
damage_results = damage_model(img)[0]
|
|
@@ -88,12 +69,9 @@ async def predict(file: UploadFile = File(...)):
|
|
| 88 |
damage_text = f"Damage: Error: {str(e)}"
|
| 89 |
logger.error(f"Damage detection error: {str(e)}")
|
| 90 |
|
| 91 |
-
car_part_img_base64 = image_to_base64(car_part_img)
|
| 92 |
damage_img_base64 = image_to_base64(damage_img)
|
| 93 |
logger.info("Returning prediction results")
|
| 94 |
return JSONResponse({
|
| 95 |
-
"car_part_image": car_part_img_base64,
|
| 96 |
-
"car_part_text": car_part_text,
|
| 97 |
"damage_image": damage_img_base64,
|
| 98 |
"damage_text": damage_text
|
| 99 |
})
|
|
@@ -105,4 +83,4 @@ async def predict(file: UploadFile = File(...)):
|
|
| 105 |
async def root():
|
| 106 |
"""Check if the API is running."""
|
| 107 |
logger.info("Health check accessed")
|
| 108 |
-
return {"message": "
|
|
|
|
| 13 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
app = FastAPI(title="Damage Detection API")
|
| 17 |
|
| 18 |
# Log model file presence
|
| 19 |
+
model_file = "/home/mussie/Documents/damage_detection_1/damage_general_model.pt"
|
| 20 |
+
if os.path.exists(model_file):
|
| 21 |
+
logger.info(f"Model file found: {model_file}")
|
| 22 |
+
else:
|
| 23 |
+
logger.error(f"Model file missing: {model_file}")
|
| 24 |
+
raise RuntimeError(f"Model file missing: {model_file}")
|
| 25 |
|
| 26 |
+
# Load YOLO model
|
| 27 |
try:
|
|
|
|
|
|
|
|
|
|
| 28 |
logger.info("Loading damage model...")
|
| 29 |
+
damage_model = YOLO(model_file)
|
| 30 |
logger.info("Damage model loaded successfully")
|
| 31 |
except Exception as e:
|
| 32 |
+
logger.error(f"Failed to load model: {str(e)}")
|
| 33 |
+
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 34 |
|
| 35 |
def image_to_base64(img: np.ndarray) -> str:
|
| 36 |
"""Convert numpy image to base64 string."""
|
|
|
|
| 41 |
logger.error(f"Error encoding image to base64: {str(e)}")
|
| 42 |
raise
|
| 43 |
|
| 44 |
+
@app.post("/predict", summary="Run inference on an image for damage detection")
|
| 45 |
async def predict(file: UploadFile = File(...)):
|
| 46 |
+
"""Upload an image and get damage detection results."""
|
| 47 |
logger.info("Received image upload")
|
| 48 |
try:
|
| 49 |
contents = await file.read()
|
|
|
|
| 52 |
logger.info(f"Image loaded: shape={img.shape}")
|
| 53 |
|
| 54 |
blank_img = np.full((img.shape[0], img.shape[1], 3), 128, dtype=np.uint8)
|
|
|
|
| 55 |
damage_img = blank_img.copy()
|
|
|
|
| 56 |
damage_text = "Damage: No detections"
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
try:
|
| 59 |
logger.info("Running damage detection...")
|
| 60 |
damage_results = damage_model(img)[0]
|
|
|
|
| 69 |
damage_text = f"Damage: Error: {str(e)}"
|
| 70 |
logger.error(f"Damage detection error: {str(e)}")
|
| 71 |
|
|
|
|
| 72 |
damage_img_base64 = image_to_base64(damage_img)
|
| 73 |
logger.info("Returning prediction results")
|
| 74 |
return JSONResponse({
|
|
|
|
|
|
|
| 75 |
"damage_image": damage_img_base64,
|
| 76 |
"damage_text": damage_text
|
| 77 |
})
|
|
|
|
| 83 |
async def root():
|
| 84 |
"""Check if the API is running."""
|
| 85 |
logger.info("Health check accessed")
|
| 86 |
+
return {"message": "Damage Detection API is running"}
|
car_part_detector_model.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:919ed7512ffbee9013a1384c467c605e1b5beaa21319db6a306b5d0aa4180e9e
|
| 3 |
-
size 6010902
|
|
|
|
|
|
|
|
|
|
|
|