Spaces:
Runtime error
Runtime error
mjarrett
commited on
Commit
·
29969bf
1
Parent(s):
76ec1cb
updated for 8B model
Browse files- Dockerfile +21 -0
- README.md +3 -3
- app.py +64 -0
- finetune.py +176 -0
- handler.py +47 -0
- requirements.txt +9 -0
Dockerfile
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Create non-root user
|
| 5 |
+
RUN useradd -m -u 1000 user
|
| 6 |
+
USER user
|
| 7 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 8 |
+
|
| 9 |
+
WORKDIR /app
|
| 10 |
+
|
| 11 |
+
# Install dependencies
|
| 12 |
+
COPY --chown=user requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 14 |
+
pip install --no-cache-dir -r requirements.txt
|
| 15 |
+
|
| 16 |
+
# Copy scripts
|
| 17 |
+
COPY --chown=user finetune.py /app/finetune.py
|
| 18 |
+
COPY --chown=user app.py /app/app.py
|
| 19 |
+
|
| 20 |
+
# Run finetune and start API
|
| 21 |
+
CMD ["bash", "-c", "python finetune.py && uvicorn app:app --host 0.0.0.0 --port 7860"]
|
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
-
title: Granite
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: yellow
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Granite 2b Finetuning
|
| 3 |
+
emoji: 🌖
|
| 4 |
colorFrom: yellow
|
| 5 |
+
colorTo: gray
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import logging
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
import os
|
| 7 |
+
import tarfile
|
| 8 |
+
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
# Debug environment variables
|
| 13 |
+
logger.info("Environment variables: %s", {k: "****" if "TOKEN" in k or k == "granite" else v for k, v in os.environ.items()})
|
| 14 |
+
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
|
| 17 |
+
model_tarball = "/app/granite-8b-finetuned-ascii.tar.gz"
|
| 18 |
+
model_path = "/app/granite-8b-finetuned-ascii"
|
| 19 |
+
|
| 20 |
+
# Extract tarball if model directory doesn't exist
|
| 21 |
+
if not os.path.exists(model_path):
|
| 22 |
+
logger.info(f"Extracting model tarball: {model_tarball}")
|
| 23 |
+
try:
|
| 24 |
+
with tarfile.open(model_tarball, "r:gz") as tar:
|
| 25 |
+
tar.extractall(path="/app")
|
| 26 |
+
logger.info("Model tarball extracted successfully")
|
| 27 |
+
except Exception as e:
|
| 28 |
+
logger.error(f"Failed to extract model tarball: {str(e)}")
|
| 29 |
+
raise HTTPException(status_code=500, detail=f"Model tarball extraction failed: {str(e)}")
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
logger.info("Loading tokenizer and model")
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 34 |
+
tokenizer.padding_side = 'right'
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
+
model_path,
|
| 37 |
+
torch_dtype=torch.float16,
|
| 38 |
+
device_map="auto",
|
| 39 |
+
trust_remote_code=True
|
| 40 |
+
)
|
| 41 |
+
logger.info("Model and tokenizer loaded successfully")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
logger.error(f"Failed to load model or tokenizer: {str(e)}")
|
| 44 |
+
raise HTTPException(status_code=500, detail=f"Model initialization failed: {str(e)}")
|
| 45 |
+
|
| 46 |
+
class EditRequest(BaseModel):
|
| 47 |
+
text: str
|
| 48 |
+
|
| 49 |
+
@app.get("/")
|
| 50 |
+
def greet_json():
|
| 51 |
+
return {"status": "Model is ready", "model": model_path}
|
| 52 |
+
|
| 53 |
+
@app.post("/generate")
|
| 54 |
+
async def generate(request: EditRequest):
|
| 55 |
+
try:
|
| 56 |
+
prompt = f"Edit this AsciiDoc sentence: {request.text}"
|
| 57 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 58 |
+
outputs = model.generate(**inputs, max_length=200)
|
| 59 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 60 |
+
logger.info(f"Generated response for prompt: {prompt}")
|
| 61 |
+
return {"response": response}
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"Generation failed: {str(e)}")
|
| 64 |
+
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
|
finetune.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from peft import LoraConfig, get_peft_model
|
| 5 |
+
from trl import SFTTrainer, SFTConfig
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
import torch
|
| 8 |
+
import tarfile
|
| 9 |
+
from huggingface_hub import HfApi
|
| 10 |
+
|
| 11 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
# Debug environment variables
|
| 15 |
+
logger.info("Environment variables: %s", {k: "****" if "TOKEN" in k or k == "granite" else v for k, v in os.environ.items()})
|
| 16 |
+
|
| 17 |
+
model_path = "ibm-granite/granite-3.3-8b-instruct"
|
| 18 |
+
dataset_path = "mycholpath/ascii-json"
|
| 19 |
+
output_dir = "/app/granite-8b-finetuned-ascii"
|
| 20 |
+
output_tarball = "/app/granite-8b-finetuned-ascii.tar.gz"
|
| 21 |
+
model_repo = "mycholpath/granite-8b-finetuned-ascii"
|
| 22 |
+
artifact_repo = "mycholpath/granite-finetuned-artifacts"
|
| 23 |
+
|
| 24 |
+
# Get HF token from granite environment variable
|
| 25 |
+
granite_var = os.getenv("granite")
|
| 26 |
+
if not granite_var or not granite_var.startswith("HF_TOKEN="):
|
| 27 |
+
logger.error("granite environment variable is not set or invalid. Expected format: HF_TOKEN=<token>.")
|
| 28 |
+
raise ValueError("granite environment variable is not set or invalid. Please set it in HF Space settings.")
|
| 29 |
+
hf_token = granite_var.replace("HF_TOKEN=", "")
|
| 30 |
+
logger.info("HF_TOKEN extracted from granite (value hidden for security)")
|
| 31 |
+
|
| 32 |
+
logging.info("Loading tokenizer...")
|
| 33 |
+
try:
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 35 |
+
model_path, token=hf_token, cache_dir="/tmp/hf_cache", trust_remote_code=True
|
| 36 |
+
)
|
| 37 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 38 |
+
tokenizer.padding_side = 'right'
|
| 39 |
+
except Exception as e:
|
| 40 |
+
logger.error(f"Failed to load tokenizer: {str(e)}")
|
| 41 |
+
raise
|
| 42 |
+
|
| 43 |
+
logging.info("Loading model...")
|
| 44 |
+
try:
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
model_path,
|
| 47 |
+
token=hf_token,
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
device_map="auto",
|
| 50 |
+
cache_dir="/tmp/hf_cache",
|
| 51 |
+
trust_remote_code=True
|
| 52 |
+
)
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.error(f"Failed to load model: {str(e)}")
|
| 55 |
+
raise
|
| 56 |
+
|
| 57 |
+
lora_config = LoraConfig(
|
| 58 |
+
r=16,
|
| 59 |
+
lora_alpha=32,
|
| 60 |
+
target_modules=["q_proj", "v_proj"],
|
| 61 |
+
lora_dropout=0.05,
|
| 62 |
+
bias="none",
|
| 63 |
+
task_type="CAUSAL_LM"
|
| 64 |
+
)
|
| 65 |
+
model = get_peft_model(model, lora_config)
|
| 66 |
+
|
| 67 |
+
logging.info("Preparing to load private dataset...")
|
| 68 |
+
logger.info("Using HF_TOKEN from granite for private dataset authentication")
|
| 69 |
+
try:
|
| 70 |
+
dataset = load_dataset(dataset_path, split="train", token=hf_token)
|
| 71 |
+
logger.info(f"Dataset loaded successfully: {len(dataset)} examples")
|
| 72 |
+
except Exception as e:
|
| 73 |
+
logger.error(f"Failed to load dataset: {str(e)}")
|
| 74 |
+
raise
|
| 75 |
+
|
| 76 |
+
def formatting_prompts_func(example):
|
| 77 |
+
formatted = f"{example['prompt']}\n{example['completion']}"
|
| 78 |
+
return [formatted]
|
| 79 |
+
|
| 80 |
+
# Use SFTConfig for training arguments
|
| 81 |
+
sft_config = SFTConfig(
|
| 82 |
+
output_dir=output_dir,
|
| 83 |
+
num_train_epochs=5,
|
| 84 |
+
per_device_train_batch_size=4,
|
| 85 |
+
per_device_eval_batch_size=4,
|
| 86 |
+
gradient_accumulation_steps=4,
|
| 87 |
+
learning_rate=2e-4,
|
| 88 |
+
weight_decay=0.01,
|
| 89 |
+
eval_strategy="no",
|
| 90 |
+
save_steps=50,
|
| 91 |
+
logging_steps=10,
|
| 92 |
+
fp16=True,
|
| 93 |
+
max_grad_norm=0.3,
|
| 94 |
+
warmup_ratio=0.03,
|
| 95 |
+
lr_scheduler_type="cosine",
|
| 96 |
+
max_seq_length=768,
|
| 97 |
+
dataset_text_field=None,
|
| 98 |
+
packing=False
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
logging.info("Starting training...")
|
| 102 |
+
try:
|
| 103 |
+
trainer = SFTTrainer(
|
| 104 |
+
model=model,
|
| 105 |
+
tokenizer=tokenizer,
|
| 106 |
+
train_dataset=dataset,
|
| 107 |
+
eval_dataset=None,
|
| 108 |
+
formatting_func=formatting_prompts_func,
|
| 109 |
+
args=sft_config
|
| 110 |
+
)
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logger.error(f"Failed to initialize SFTTrainer: {str(e)}")
|
| 113 |
+
raise
|
| 114 |
+
|
| 115 |
+
trainer.train()
|
| 116 |
+
|
| 117 |
+
logging.info("Saving fine-tuned model...")
|
| 118 |
+
trainer.save_model(output_dir)
|
| 119 |
+
tokenizer.save_pretrained(output_dir)
|
| 120 |
+
|
| 121 |
+
# Create tarball for local retrieval
|
| 122 |
+
try:
|
| 123 |
+
with tarfile.open(output_tarball, "w:gz") as tar:
|
| 124 |
+
tar.add(output_dir, arcname=os.path.basename(output_dir))
|
| 125 |
+
logger.info(f"Model tarball created: {output_tarball}")
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logger.error(f"Failed to create model tarball: {str(e)}")
|
| 128 |
+
raise
|
| 129 |
+
|
| 130 |
+
# Upload model to HF Hub
|
| 131 |
+
try:
|
| 132 |
+
api = HfApi()
|
| 133 |
+
logger.info(f"Creating model repository: {model_repo}")
|
| 134 |
+
api.create_repo(
|
| 135 |
+
repo_id=model_repo,
|
| 136 |
+
repo_type="model",
|
| 137 |
+
token=hf_token,
|
| 138 |
+
private=True,
|
| 139 |
+
exist_ok=True
|
| 140 |
+
)
|
| 141 |
+
logger.info(f"Uploading model to {model_repo}")
|
| 142 |
+
api.upload_folder(
|
| 143 |
+
folder_path=output_dir,
|
| 144 |
+
repo_id=model_repo,
|
| 145 |
+
repo_type="model",
|
| 146 |
+
token=hf_token,
|
| 147 |
+
create_pr=False
|
| 148 |
+
)
|
| 149 |
+
logger.info(f"Fine-tuned model uploaded to {model_repo}")
|
| 150 |
+
except Exception as e:
|
| 151 |
+
logger.error(f"Failed to upload model to HF Hub: {str(e)}")
|
| 152 |
+
logger.warning("Continuing to tarball upload despite model upload failure")
|
| 153 |
+
|
| 154 |
+
# Upload tarball to HF Hub dataset repository
|
| 155 |
+
try:
|
| 156 |
+
api = HfApi()
|
| 157 |
+
logger.info(f"Creating dataset repository: {artifact_repo}")
|
| 158 |
+
api.create_repo(
|
| 159 |
+
repo_id=artifact_repo,
|
| 160 |
+
repo_type="dataset",
|
| 161 |
+
token=hf_token,
|
| 162 |
+
private=True,
|
| 163 |
+
exist_ok=True
|
| 164 |
+
)
|
| 165 |
+
logger.info(f"Uploading tarball to {artifact_repo}")
|
| 166 |
+
api.upload_file(
|
| 167 |
+
path_or_fileobj=output_tarball,
|
| 168 |
+
path_in_repo="granite-8b-finetuned-ascii.tar.gz",
|
| 169 |
+
repo_id=artifact_repo,
|
| 170 |
+
repo_type="dataset"
|
| 171 |
+
token=hf_token
|
| 172 |
+
)
|
| 173 |
+
logger.info(f"Tarball uploaded to {artifact_repo}/granite-8b-finetuned-ascii.tar.gz")
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logger.error(f"Failed to upload tarball to HF Hub: {str(e)}")
|
| 176 |
+
raise
|
handler.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
class EndpointHandler:
|
| 5 |
+
def __init__(self, path=""):
|
| 6 |
+
self.pipeline = pipeline("text-generation", model=path, device=0)
|
| 7 |
+
|
| 8 |
+
def __call__(self, data):
|
| 9 |
+
inputs = data.get("inputs", "")
|
| 10 |
+
style_guide = data.get("style_guide", "Apply general AsciiDoc best practices.")
|
| 11 |
+
max_tokens = data.get("max_tokens", 2048)
|
| 12 |
+
|
| 13 |
+
system_prompt = f"""
|
| 14 |
+
You are an expert technical editor specializing in AsciiDoc document correction. Your task is to analyze the provided AsciiDoc text and suggest corrections based on the following style guide:
|
| 15 |
+
{style_guide}
|
| 16 |
+
|
| 17 |
+
**Output Requirements**:
|
| 18 |
+
- Return corrections **only** in valid JSON format, enclosed in curly braces: {{"corrections": [...]}}.
|
| 19 |
+
- Each correction must include:
|
| 20 |
+
- "original_line": The exact line from the input text.
|
| 21 |
+
- "corrected_line": The corrected version of the line.
|
| 22 |
+
- "explanation": A brief reason for the correction.
|
| 23 |
+
- If no corrections are needed, return: {{"corrections": []}}.
|
| 24 |
+
- Ensure the JSON is complete, valid, and concise to avoid truncation.
|
| 25 |
+
- Do **not** include any text, comments, or explanations outside the JSON object.
|
| 26 |
+
- Do **not** include placeholder text like "<original AsciiDoc line>".
|
| 27 |
+
- Only correct lines with AsciiDoc syntax, style, or technical accuracy issues (e.g., missing punctuation, incorrect headers, malformed attributes like :gls_prefix:).
|
| 28 |
+
|
| 29 |
+
Analyze the following AsciiDoc lines and provide corrections in JSON format:
|
| 30 |
+
"""
|
| 31 |
+
prompt = f"{system_prompt}\n{inputs}"
|
| 32 |
+
|
| 33 |
+
try:
|
| 34 |
+
response = self.pipeline(
|
| 35 |
+
prompt,
|
| 36 |
+
max_new_tokens=max_tokens,
|
| 37 |
+
temperature=0.3,
|
| 38 |
+
return_full_text=False
|
| 39 |
+
)[0]["generated_text"].strip()
|
| 40 |
+
json_start = response.find('{')
|
| 41 |
+
json_end = response.rfind('}') + 1
|
| 42 |
+
if json_start == -1 or json_end == -1:
|
| 43 |
+
return {"corrections": []}
|
| 44 |
+
correction_json = json.loads(response[json_start:json_end])
|
| 45 |
+
return correction_json
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return {"corrections": []}
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.46.0
|
| 2 |
+
torch==2.4.1
|
| 3 |
+
datasets==3.0.1
|
| 4 |
+
peft==0.13.2
|
| 5 |
+
trl==0.11.4
|
| 6 |
+
accelerate==1.0.1
|
| 7 |
+
huggingface_hub==0.25.2
|
| 8 |
+
fastapi==0.115.2
|
| 9 |
+
uvicorn==0.32.0
|