Update app.py
Browse files
app.py
CHANGED
|
@@ -1,204 +1,207 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
import pandas as pd
|
| 4 |
-
from
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
from
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
with gr.Row():
|
| 107 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
with gr.Column():
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
finished_eval_table = gr.components.Dataframe(
|
| 116 |
-
value=finished_eval_queue_df,
|
| 117 |
-
headers=EVAL_COLS,
|
| 118 |
-
datatype=EVAL_TYPES,
|
| 119 |
-
row_count=5,
|
| 120 |
-
)
|
| 121 |
-
with gr.Accordion(
|
| 122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 123 |
-
open=False,
|
| 124 |
-
):
|
| 125 |
-
with gr.Row():
|
| 126 |
-
running_eval_table = gr.components.Dataframe(
|
| 127 |
-
value=running_eval_queue_df,
|
| 128 |
-
headers=EVAL_COLS,
|
| 129 |
-
datatype=EVAL_TYPES,
|
| 130 |
-
row_count=5,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
with gr.Accordion(
|
| 134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 135 |
-
open=False,
|
| 136 |
-
):
|
| 137 |
-
with gr.Row():
|
| 138 |
-
pending_eval_table = gr.components.Dataframe(
|
| 139 |
-
value=pending_eval_queue_df,
|
| 140 |
-
headers=EVAL_COLS,
|
| 141 |
-
datatype=EVAL_TYPES,
|
| 142 |
-
row_count=5,
|
| 143 |
-
)
|
| 144 |
-
with gr.Row():
|
| 145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 146 |
-
|
| 147 |
-
with gr.Row():
|
| 148 |
-
with gr.Column():
|
| 149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 151 |
-
model_type = gr.Dropdown(
|
| 152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
| 153 |
-
label="Model type",
|
| 154 |
-
multiselect=False,
|
| 155 |
-
value=None,
|
| 156 |
-
interactive=True,
|
| 157 |
)
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
label=CITATION_BUTTON_LABEL,
|
| 196 |
-
lines=20,
|
| 197 |
-
elem_id="citation-button",
|
| 198 |
-
show_copy_button=True,
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
scheduler = BackgroundScheduler()
|
| 202 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 203 |
-
scheduler.start()
|
| 204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
import pandas as pd
|
| 4 |
+
from urllib.request import urlopen
|
| 5 |
+
from urllib.error import URLError
|
| 6 |
+
import re
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
|
| 9 |
+
# Constants
|
| 10 |
+
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
|
| 11 |
+
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
|
| 12 |
+
author={OpenCompass Contributors},
|
| 13 |
+
howpublished = {\url{https://github.com/open-compass/opencompass}},
|
| 14 |
+
year={2023}
|
| 15 |
+
}"""
|
| 16 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
| 17 |
+
# 开发环境
|
| 18 |
+
# DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/research-rank/research-data.REALTIME."
|
| 19 |
+
# DATA_URL_BASE = "./s1test"
|
| 20 |
+
# 生产环境
|
| 21 |
+
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/assets/research-rank/research-data.REALTIME."
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def find_latest_data_url():
|
| 25 |
+
"""Find the latest available data URL by trying different dates."""
|
| 26 |
+
today = datetime.now()
|
| 27 |
+
for i in range(365):
|
| 28 |
+
date = today.replace(day=today.day - i)
|
| 29 |
+
date_str = date.strftime("%Y%m%d")
|
| 30 |
+
url = f"{DATA_URL_BASE}{date_str}.json"
|
| 31 |
+
try:
|
| 32 |
+
urlopen(url)
|
| 33 |
+
return url, date_str
|
| 34 |
+
except URLError:
|
| 35 |
+
continue
|
| 36 |
+
breakpoint()
|
| 37 |
+
return None, None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_latest_data():
|
| 41 |
+
"""Get latest data URL and update time"""
|
| 42 |
+
data_url, update_time = find_latest_data_url()
|
| 43 |
+
if not data_url:
|
| 44 |
+
raise Exception("Could not find valid data URL")
|
| 45 |
+
formatted_update_time = datetime.strptime(update_time, "%Y%m%d").strftime("%Y-%m-%d")
|
| 46 |
+
return data_url, formatted_update_time
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_leaderboard_title(update_time):
|
| 50 |
+
return f"# Supported Datasets List (Last Updated: {update_time})"
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
MAIN_DESCRIPTION = """## The List of Datasets Supported by OpenCompass
|
| 54 |
+
Testing line.
|
| 55 |
+
- All configurations and datsets can be found in [**OpenCompass**: A Toolkit for Evaluation of LLMs](https://github.com/open-compass/opencompass)🏆.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def load_data(data_url):
|
| 62 |
+
response = urlopen(data_url)
|
| 63 |
+
|
| 64 |
+
with open('s1.json','r',encoding='utf8') as f:
|
| 65 |
+
data = json.load(f)
|
| 66 |
+
|
| 67 |
+
return data
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def build_main_table(data):
|
| 71 |
+
df = pd.DataFrame(data).transpose()
|
| 72 |
+
columns = {
|
| 73 |
+
'name': 'Name', 'category': 'Category', 'article': 'Article Address',
|
| 74 |
+
}
|
| 75 |
+
df = df[list(columns.keys())].rename(columns=columns)
|
| 76 |
+
return df
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
DATA_CATEGORY = ['med', 'law', 'code']
|
| 80 |
+
|
| 81 |
+
def filter_table1(df, data_category):
|
| 82 |
+
filtered_df = df.copy()
|
| 83 |
+
if data_category:
|
| 84 |
+
mask = pd.Series(False, index=filtered_df.index)
|
| 85 |
+
for category in data_category:
|
| 86 |
+
mask |= filtered_df['Category'] == category
|
| 87 |
+
filtered_df = filtered_df[mask]
|
| 88 |
+
|
| 89 |
+
return filtered_df
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def calculate_column_widths(df):
|
| 93 |
+
column_widths = []
|
| 94 |
+
for column in df.columns:
|
| 95 |
+
header_length = len(str(column))
|
| 96 |
+
max_content_length = df[column].astype(str).map(len).max()
|
| 97 |
+
width = max(header_length * 10, max_content_length * 8) + 20
|
| 98 |
+
width = max(160, min(400, width))
|
| 99 |
+
column_widths.append(width)
|
| 100 |
+
return column_widths
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
class DataState:
|
| 104 |
+
def __init__(self):
|
| 105 |
+
self.current_df = None
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
data_state = DataState()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def create_interface():
|
| 112 |
+
empty_df = pd.DataFrame(columns=[
|
| 113 |
+
'Name', 'Category', 'Article Address'
|
| 114 |
+
])
|
| 115 |
+
|
| 116 |
+
def load_initial_data():
|
| 117 |
+
try:
|
| 118 |
+
data_url, update_time = get_latest_data()
|
| 119 |
+
data = load_data(data_url)
|
| 120 |
+
new_df = build_main_table(data)
|
| 121 |
+
data_state.current_df = new_df
|
| 122 |
+
filtered_df = filter_table1(new_df, DATA_CATEGORY)
|
| 123 |
+
return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True)
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"Error loading initial data: {e}")
|
| 126 |
+
return "# Supported Datasets List (Error loading data)", empty_df
|
| 127 |
+
|
| 128 |
+
def refresh_data():
|
| 129 |
+
try:
|
| 130 |
+
data_url, update_time = get_latest_data()
|
| 131 |
+
data = load_data(data_url)
|
| 132 |
+
new_df = build_main_table(data)
|
| 133 |
+
data_state.current_df = new_df
|
| 134 |
+
filtered_df = filter_table1(new_df, DATA_CATEGORY)
|
| 135 |
+
return get_leaderboard_title(update_time), filtered_df.sort_values("Name", ascending=True)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"Error refreshing data: {e}")
|
| 138 |
+
return None, None
|
| 139 |
+
|
| 140 |
+
def update_table(category):
|
| 141 |
+
if data_state.current_df is None:
|
| 142 |
+
return empty_df
|
| 143 |
+
filtered_df = filter_table1(data_state.current_df, category)
|
| 144 |
+
return filtered_df.sort_values("Name", ascending=True)
|
| 145 |
+
|
| 146 |
+
initial_title, initial_data = load_initial_data()
|
| 147 |
+
|
| 148 |
+
with gr.Blocks() as demo:
|
| 149 |
+
title_comp = gr.Markdown(initial_title)
|
| 150 |
+
|
| 151 |
+
with gr.Tabs() as tabs:
|
| 152 |
+
with gr.TabItem("Dataset List", elem_id='main'):
|
| 153 |
+
gr.Markdown(MAIN_DESCRIPTION)
|
| 154 |
+
|
| 155 |
with gr.Row():
|
| 156 |
+
with gr.Column():
|
| 157 |
+
category_filter = gr.CheckboxGroup(
|
| 158 |
+
choices=DATA_CATEGORY,
|
| 159 |
+
value=DATA_CATEGORY,
|
| 160 |
+
label='Category',
|
| 161 |
+
interactive=True,
|
| 162 |
+
)
|
| 163 |
|
| 164 |
with gr.Column():
|
| 165 |
+
table = gr.DataFrame(
|
| 166 |
+
value=initial_data,
|
| 167 |
+
interactive=False,
|
| 168 |
+
wrap=False,
|
| 169 |
+
column_widths=calculate_column_widths(initial_data),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
|
| 172 |
+
refresh_button = gr.Button("Refresh Data")
|
| 173 |
+
|
| 174 |
+
def refresh_and_update():
|
| 175 |
+
title, data = refresh_data()
|
| 176 |
+
return title, data
|
| 177 |
+
|
| 178 |
+
refresh_button.click(
|
| 179 |
+
fn=refresh_and_update,
|
| 180 |
+
outputs=[title_comp, table],
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
category_filter.change(
|
| 184 |
+
fn=update_table,
|
| 185 |
+
inputs=[category_filter],
|
| 186 |
+
outputs=table,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
with gr.Accordion("Citation", open=False):
|
| 192 |
+
citation_button = gr.Textbox(
|
| 193 |
+
value=CITATION_BUTTON_TEXT,
|
| 194 |
+
label=CITATION_BUTTON_LABEL,
|
| 195 |
+
elem_id='citation-button',
|
| 196 |
+
lines=6, # 增加行数
|
| 197 |
+
max_lines=8, # 设置最大行数
|
| 198 |
+
show_copy_button=True # 添加复制按钮使其更方便使用
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
return demo
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
if __name__ == '__main__':
|
| 205 |
+
demo = create_interface()
|
| 206 |
+
demo.queue()
|
| 207 |
+
demo.launch(server_name='0.0.0.0')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|