Spaces:
Runtime error
Runtime error
Enhance app.py with Langfuse integration and file handling; update requirements.txt with additional dependencies.
Browse files- .gitignore +120 -0
- app.py +42 -12
- graph/graph_builder.py +23 -0
- graph_builder.py +23 -0
- nodes/core.py +54 -0
- requirements.txt +121 -2
- states/state.py +7 -0
- tools/math_tools.py +61 -0
- tools/multimodal_tools.py +179 -0
- tools/search_tools.py +54 -0
- tools/youtube_tools.py +26 -0
.gitignore
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
pip-wheel-metadata/
|
| 24 |
+
share/python-wheels/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# PyInstaller
|
| 31 |
+
# Usually these files are written by a python script from a template
|
| 32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 33 |
+
*.manifest
|
| 34 |
+
*.spec
|
| 35 |
+
|
| 36 |
+
# Installer logs
|
| 37 |
+
pip-log.txt
|
| 38 |
+
pip-delete-this-directory.txt
|
| 39 |
+
|
| 40 |
+
# Unit test / coverage reports
|
| 41 |
+
htmlcov/
|
| 42 |
+
.tox/
|
| 43 |
+
.nox/
|
| 44 |
+
.coverage
|
| 45 |
+
.coverage.*
|
| 46 |
+
.cache
|
| 47 |
+
nosetests.xml
|
| 48 |
+
coverage.xml
|
| 49 |
+
*.cover
|
| 50 |
+
*.py,cover
|
| 51 |
+
.hypothesis/
|
| 52 |
+
.pytest_cache/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
target/
|
| 76 |
+
|
| 77 |
+
# Jupyter Notebook
|
| 78 |
+
.ipynb_checkpoints
|
| 79 |
+
|
| 80 |
+
# IPython
|
| 81 |
+
profile_default/
|
| 82 |
+
ipython_config.py
|
| 83 |
+
|
| 84 |
+
# pyenv
|
| 85 |
+
.python-version
|
| 86 |
+
|
| 87 |
+
# PEP 582; __pypackages__
|
| 88 |
+
__pypackages__/
|
| 89 |
+
|
| 90 |
+
# Celery stuff
|
| 91 |
+
celerybeat-schedule
|
| 92 |
+
celerybeat.pid
|
| 93 |
+
|
| 94 |
+
# SageMath parsed files
|
| 95 |
+
*.sage.py
|
| 96 |
+
|
| 97 |
+
# Environments
|
| 98 |
+
.env
|
| 99 |
+
.venv
|
| 100 |
+
env/
|
| 101 |
+
venv/
|
| 102 |
+
ENV/
|
| 103 |
+
env.bak/
|
| 104 |
+
venv.bak/
|
| 105 |
+
|
| 106 |
+
# IDE / Editor specific files
|
| 107 |
+
.idea/
|
| 108 |
+
.vscode/
|
| 109 |
+
*.project
|
| 110 |
+
*.pydevproject
|
| 111 |
+
.project
|
| 112 |
+
.settings/
|
| 113 |
+
*.sublime-workspace
|
| 114 |
+
|
| 115 |
+
# dotenv
|
| 116 |
+
.env
|
| 117 |
+
|
| 118 |
+
# OS specific files
|
| 119 |
+
.DS_Store
|
| 120 |
+
Thumbs.db
|
app.py
CHANGED
|
@@ -3,23 +3,43 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# --- Basic Agent Definition ---
|
| 12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
-
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
print("BasicAgent initialized.")
|
| 16 |
-
def __call__(self, question: str) -> str:
|
| 17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
fixed_answer = "This is a default answer."
|
|
|
|
|
|
|
| 19 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 20 |
-
return fixed_answer
|
| 21 |
|
| 22 |
-
def run_and_submit_all( profile: gr.OAuthProfile
|
| 23 |
"""
|
| 24 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 25 |
and displays the results.
|
|
@@ -40,7 +60,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 40 |
|
| 41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
-
agent =
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
|
@@ -76,13 +96,24 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 76 |
for item in questions_data:
|
| 77 |
task_id = item.get("task_id")
|
| 78 |
question_text = item.get("question")
|
|
|
|
|
|
|
| 79 |
if not task_id or question_text is None:
|
| 80 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
except Exception as e:
|
| 87 |
print(f"Error running agent on task {task_id}: {e}")
|
| 88 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
@@ -146,11 +177,9 @@ with gr.Blocks() as demo:
|
|
| 146 |
gr.Markdown(
|
| 147 |
"""
|
| 148 |
**Instructions:**
|
| 149 |
-
|
| 150 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 151 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 152 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 153 |
-
|
| 154 |
---
|
| 155 |
**Disclaimers:**
|
| 156 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
@@ -193,4 +222,5 @@ if __name__ == "__main__":
|
|
| 193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
|
| 195 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 196 |
-
demo.launch(debug=True, share=False)
|
|
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
from graph.graph_builder import graph
|
| 7 |
+
from langfuse.callback import CallbackHandler
|
| 8 |
+
from typing import Optional
|
| 9 |
+
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage
|
| 10 |
# (Keep Constants as is)
|
| 11 |
# --- Constants ---
|
| 12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 13 |
|
| 14 |
+
|
| 15 |
+
langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
|
| 16 |
+
langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
|
| 17 |
+
|
| 18 |
+
# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
|
| 19 |
+
langfuse_handler = CallbackHandler(
|
| 20 |
+
public_key=langfuse_public_key,
|
| 21 |
+
secret_key=langfuse_secret_key,
|
| 22 |
+
host="https://cloud.langfuse.com"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
# --- Basic Agent Definition ---
|
| 26 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 27 |
+
""" class BasicAgent:
|
| 28 |
def __init__(self):
|
| 29 |
print("BasicAgent initialized.")
|
| 30 |
+
def __call__(self, question: str, file_name: str | None = None) -> str:
|
| 31 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 32 |
+
if file_name:
|
| 33 |
+
print(f"Agent received file_name: {file_name}")
|
| 34 |
+
# Qui puoi aggiungere la logica per utilizzare file_name se fornito.
|
| 35 |
+
# Per ora, lo aggiungiamo alla risposta di default per dimostrazione.
|
| 36 |
fixed_answer = "This is a default answer."
|
| 37 |
+
if file_name:
|
| 38 |
+
fixed_answer += f" (File to use: {file_name})"
|
| 39 |
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 40 |
+
return fixed_answer """
|
| 41 |
|
| 42 |
+
def run_and_submit_all( profile: Optional[gr.OAuthProfile]):
|
| 43 |
"""
|
| 44 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 45 |
and displays the results.
|
|
|
|
| 60 |
|
| 61 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 62 |
try:
|
| 63 |
+
agent = graph
|
| 64 |
except Exception as e:
|
| 65 |
print(f"Error instantiating agent: {e}")
|
| 66 |
return f"Error initializing agent: {e}", None
|
|
|
|
| 96 |
for item in questions_data:
|
| 97 |
task_id = item.get("task_id")
|
| 98 |
question_text = item.get("question")
|
| 99 |
+
file_name = item.get("file_name") # Estrai file_name
|
| 100 |
+
|
| 101 |
if not task_id or question_text is None:
|
| 102 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 103 |
continue
|
| 104 |
try:
|
| 105 |
+
if file_name and isinstance(file_name, str) and file_name.strip():
|
| 106 |
+
messages = HumanMessage(content=question_text + " Path: files/" + file_name)
|
| 107 |
+
else:
|
| 108 |
+
messages = HumanMessage(content=question_text)
|
| 109 |
+
submitted_answer = graph.invoke(input={"messages": messages}, config={"callbacks": [langfuse_handler]})
|
| 110 |
+
answers_payload.append({
|
| 111 |
+
"task_id": task_id,
|
| 112 |
+
"submitted_answer": submitted_answer['messages'][-1].content[-1]
|
| 113 |
+
if isinstance(submitted_answer['messages'][-1].content, list)
|
| 114 |
+
else submitted_answer['messages'][-1].content
|
| 115 |
+
})
|
| 116 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "File Name": file_name if file_name and file_name.strip() else "N/A", "Submitted Answer": submitted_answer['messages'][-1].content})
|
| 117 |
except Exception as e:
|
| 118 |
print(f"Error running agent on task {task_id}: {e}")
|
| 119 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
| 177 |
gr.Markdown(
|
| 178 |
"""
|
| 179 |
**Instructions:**
|
|
|
|
| 180 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 181 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 182 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
| 183 |
---
|
| 184 |
**Disclaimers:**
|
| 185 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
|
| 222 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 223 |
|
| 224 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 225 |
+
demo.launch(debug=True, share=False)
|
| 226 |
+
|
graph/graph_builder.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langgraph.graph import START, StateGraph
|
| 2 |
+
from langgraph.prebuilt import tools_condition
|
| 3 |
+
from langgraph.prebuilt import ToolNode
|
| 4 |
+
from nodes.core import assistant, tools
|
| 5 |
+
from states.state import AgentState
|
| 6 |
+
|
| 7 |
+
## The graph
|
| 8 |
+
builder = StateGraph(AgentState)
|
| 9 |
+
|
| 10 |
+
# Define nodes: these do the work
|
| 11 |
+
builder.add_node("assistant", assistant)
|
| 12 |
+
builder.add_node("tools", ToolNode(tools))
|
| 13 |
+
|
| 14 |
+
# Define edges: these determine how the control flow moves
|
| 15 |
+
builder.add_edge(START, "assistant")
|
| 16 |
+
builder.add_conditional_edges(
|
| 17 |
+
"assistant",
|
| 18 |
+
# If the latest message requires a tool, route to tools
|
| 19 |
+
# Otherwise, provide a direct response
|
| 20 |
+
tools_condition,
|
| 21 |
+
)
|
| 22 |
+
builder.add_edge("tools", "assistant")
|
| 23 |
+
graph = builder.compile()
|
graph_builder.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langgraph.graph import START, StateGraph
|
| 2 |
+
from langgraph.prebuilt import tools_condition
|
| 3 |
+
from langgraph.prebuilt import ToolNode
|
| 4 |
+
from nodes.core import assistant, tools
|
| 5 |
+
from states.state import AgentState
|
| 6 |
+
|
| 7 |
+
## The graph
|
| 8 |
+
builder = StateGraph(AgentState)
|
| 9 |
+
|
| 10 |
+
# Define nodes: these do the work
|
| 11 |
+
builder.add_node("assistant", assistant)
|
| 12 |
+
builder.add_node("tools", ToolNode(tools))
|
| 13 |
+
|
| 14 |
+
# Define edges: these determine how the control flow moves
|
| 15 |
+
builder.add_edge(START, "assistant")
|
| 16 |
+
builder.add_conditional_edges(
|
| 17 |
+
"assistant",
|
| 18 |
+
# If the latest message requires a tool, route to tools
|
| 19 |
+
# Otherwise, provide a direct response
|
| 20 |
+
tools_condition,
|
| 21 |
+
)
|
| 22 |
+
builder.add_edge("tools", "assistant")
|
| 23 |
+
graph = builder.compile()
|
nodes/core.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from states.state import AgentState
|
| 2 |
+
import os
|
| 3 |
+
# Import the load_dotenv function from the dotenv library
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 6 |
+
from tools.multimodal_tools import extract_text, analyze_image_tool, analyze_audio_tool
|
| 7 |
+
from tools.math_tools import add, subtract, multiply, divide
|
| 8 |
+
from tools.search_tools import search_tool, serpapi_search
|
| 9 |
+
from tools.youtube_tools import extract_youtube_transcript
|
| 10 |
+
from langfuse.callback import CallbackHandler
|
| 11 |
+
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
# Read your API key from the environment variable or set it manually
|
| 15 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 16 |
+
langfuse_secret_key = os.getenv("LANGFUSE_SECRET_KEY")
|
| 17 |
+
langfuse_public_key = os.getenv("LANGFUSE_PUBLIC_KEY")
|
| 18 |
+
|
| 19 |
+
# Initialize Langfuse CallbackHandler for LangGraph/Langchain (tracing)
|
| 20 |
+
langfuse_handler = CallbackHandler(
|
| 21 |
+
public_key=langfuse_public_key,
|
| 22 |
+
secret_key=langfuse_secret_key,
|
| 23 |
+
host="http://localhost:3000"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
chat = ChatGoogleGenerativeAI(
|
| 27 |
+
model= "gemini-2.5-pro-preview-05-06",
|
| 28 |
+
temperature=0,
|
| 29 |
+
max_retries=2,
|
| 30 |
+
google_api_key=api_key,
|
| 31 |
+
thinking_budget= 0
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
tools = [
|
| 35 |
+
extract_text,
|
| 36 |
+
analyze_image_tool,
|
| 37 |
+
analyze_audio_tool,
|
| 38 |
+
extract_youtube_transcript,
|
| 39 |
+
add,
|
| 40 |
+
subtract,
|
| 41 |
+
multiply,
|
| 42 |
+
divide,
|
| 43 |
+
search_tool
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
chat_with_tools = chat.bind_tools(tools)
|
| 47 |
+
|
| 48 |
+
def assistant(state: AgentState):
|
| 49 |
+
sys_msg = "You are a helpful assistant with access to tools. Understand user requests accurately. Use your tools when needed to answer effectively. Strictly follow all user instructions and constraints." \
|
| 50 |
+
"Pay attention: your output needs to contain only the final answer without any reasoning since it will be strictly evaluated against a dataset which contains only the specific response." \
|
| 51 |
+
"Your final output needs to be just the string or integer containing the answer, not an array or technical stuff."
|
| 52 |
+
return {
|
| 53 |
+
"messages": [chat_with_tools.invoke([sys_msg] + state["messages"])]
|
| 54 |
+
}
|
requirements.txt
CHANGED
|
@@ -1,2 +1,121 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==24.1.0
|
| 2 |
+
aiohappyeyeballs==2.6.1
|
| 3 |
+
aiohttp==3.12.7
|
| 4 |
+
aiosignal==1.3.2
|
| 5 |
+
annotated-types==0.7.0
|
| 6 |
+
anyio==4.9.0
|
| 7 |
+
asttokens==3.0.0
|
| 8 |
+
async-timeout==4.0.3
|
| 9 |
+
attrs==25.3.0
|
| 10 |
+
backoff==2.2.1
|
| 11 |
+
cachetools==5.5.2
|
| 12 |
+
certifi==2025.4.26
|
| 13 |
+
charset-normalizer==3.4.2
|
| 14 |
+
click==8.2.1
|
| 15 |
+
colorama==0.4.6
|
| 16 |
+
dataclasses-json==0.6.7
|
| 17 |
+
decorator==5.2.1
|
| 18 |
+
defusedxml==0.7.1
|
| 19 |
+
exceptiongroup==1.3.0
|
| 20 |
+
executing==2.2.0
|
| 21 |
+
fastapi==0.115.12
|
| 22 |
+
ffmpy==0.6.0
|
| 23 |
+
filelock==3.18.0
|
| 24 |
+
filetype==1.2.0
|
| 25 |
+
frozenlist==1.6.0
|
| 26 |
+
fsspec==2025.5.1
|
| 27 |
+
google-ai-generativelanguage==0.6.18
|
| 28 |
+
google-api-core==2.25.0
|
| 29 |
+
google-auth==2.40.2
|
| 30 |
+
google-search-results==2.4.2
|
| 31 |
+
googleapis-common-protos==1.70.0
|
| 32 |
+
gradio==5.32.1
|
| 33 |
+
gradio_client==1.10.2
|
| 34 |
+
greenlet==3.2.2
|
| 35 |
+
groovy==0.1.2
|
| 36 |
+
grpcio==1.72.1
|
| 37 |
+
grpcio-status==1.72.1
|
| 38 |
+
h11==0.16.0
|
| 39 |
+
httpcore==1.0.9
|
| 40 |
+
httpx==0.28.1
|
| 41 |
+
httpx-sse==0.4.0
|
| 42 |
+
huggingface-hub==0.32.4
|
| 43 |
+
idna==3.10
|
| 44 |
+
ipython==8.37.0
|
| 45 |
+
jedi==0.19.2
|
| 46 |
+
Jinja2==3.1.6
|
| 47 |
+
jsonpatch==1.33
|
| 48 |
+
jsonpointer==3.0.0
|
| 49 |
+
langchain==0.3.25
|
| 50 |
+
langchain-community==0.3.24
|
| 51 |
+
langchain-core==0.3.63
|
| 52 |
+
langchain-google-genai==2.1.5
|
| 53 |
+
langchain-text-splitters==0.3.8
|
| 54 |
+
langfuse==2.60.7
|
| 55 |
+
langgraph==0.4.8
|
| 56 |
+
langgraph-checkpoint==2.0.26
|
| 57 |
+
langgraph-prebuilt==0.2.2
|
| 58 |
+
langgraph-sdk==0.1.70
|
| 59 |
+
langsmith==0.3.44
|
| 60 |
+
markdown-it-py==3.0.0
|
| 61 |
+
MarkupSafe==3.0.2
|
| 62 |
+
marshmallow==3.26.1
|
| 63 |
+
matplotlib-inline==0.1.7
|
| 64 |
+
mdurl==0.1.2
|
| 65 |
+
multidict==6.4.4
|
| 66 |
+
mypy_extensions==1.1.0
|
| 67 |
+
numpy==2.2.6
|
| 68 |
+
orjson==3.10.18
|
| 69 |
+
ormsgpack==1.10.0
|
| 70 |
+
packaging==24.2
|
| 71 |
+
pandas==2.2.3
|
| 72 |
+
parso==0.8.4
|
| 73 |
+
pillow==11.2.1
|
| 74 |
+
prompt_toolkit==3.0.51
|
| 75 |
+
propcache==0.3.1
|
| 76 |
+
proto-plus==1.26.1
|
| 77 |
+
protobuf==6.31.1
|
| 78 |
+
pure_eval==0.2.3
|
| 79 |
+
pyasn1==0.6.1
|
| 80 |
+
pyasn1_modules==0.4.2
|
| 81 |
+
pydantic==2.11.5
|
| 82 |
+
pydantic-settings==2.9.1
|
| 83 |
+
pydantic_core==2.33.2
|
| 84 |
+
pydub==0.25.1
|
| 85 |
+
Pygments==2.19.1
|
| 86 |
+
python-dateutil==2.9.0.post0
|
| 87 |
+
python-dotenv==1.1.0
|
| 88 |
+
python-multipart==0.0.20
|
| 89 |
+
pytz==2025.2
|
| 90 |
+
PyYAML==6.0.2
|
| 91 |
+
requests==2.32.3
|
| 92 |
+
requests-toolbelt==1.0.0
|
| 93 |
+
rich==14.0.0
|
| 94 |
+
rsa==4.9.1
|
| 95 |
+
ruff==0.11.12
|
| 96 |
+
safehttpx==0.1.6
|
| 97 |
+
semantic-version==2.10.0
|
| 98 |
+
shellingham==1.5.4
|
| 99 |
+
six==1.17.0
|
| 100 |
+
sniffio==1.3.1
|
| 101 |
+
SQLAlchemy==2.0.41
|
| 102 |
+
stack-data==0.6.3
|
| 103 |
+
starlette==0.46.2
|
| 104 |
+
tenacity==9.1.2
|
| 105 |
+
tomlkit==0.13.2
|
| 106 |
+
tqdm==4.67.1
|
| 107 |
+
traitlets==5.14.3
|
| 108 |
+
typer==0.16.0
|
| 109 |
+
typing-inspect==0.9.0
|
| 110 |
+
typing-inspection==0.4.1
|
| 111 |
+
typing_extensions==4.14.0
|
| 112 |
+
tzdata==2025.2
|
| 113 |
+
urllib3==2.4.0
|
| 114 |
+
uvicorn==0.34.3
|
| 115 |
+
wcwidth==0.2.13
|
| 116 |
+
websockets==15.0.1
|
| 117 |
+
wrapt==1.17.2
|
| 118 |
+
xxhash==3.5.0
|
| 119 |
+
yarl==1.20.0
|
| 120 |
+
youtube-transcript-api==1.0.3
|
| 121 |
+
zstandard==0.23.0
|
states/state.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TypedDict, Annotated
|
| 2 |
+
from langchain_core.messages import AnyMessage
|
| 3 |
+
from langgraph.graph.message import add_messages
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class AgentState(TypedDict):
|
| 7 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
tools/math_tools.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.tools import tool
|
| 2 |
+
import operator
|
| 3 |
+
|
| 4 |
+
@tool("add_tool", parse_docstring=True)
|
| 5 |
+
def add(a: float, b: float) -> float:
|
| 6 |
+
"""
|
| 7 |
+
Adds two numbers.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
a: The first number.
|
| 11 |
+
b: The second number.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
The sum of a and b.
|
| 15 |
+
"""
|
| 16 |
+
return operator.add(a, b)
|
| 17 |
+
|
| 18 |
+
@tool("subtract_tool", parse_docstring=True)
|
| 19 |
+
def subtract(a: float, b: float) -> float:
|
| 20 |
+
"""
|
| 21 |
+
Subtracts the second number from the first.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
a: The first number (minuend).
|
| 25 |
+
b: The second number (subtrahend).
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
The result of subtracting b from a.
|
| 29 |
+
"""
|
| 30 |
+
return operator.sub(a, b)
|
| 31 |
+
|
| 32 |
+
@tool("multiply_tool", parse_docstring=True)
|
| 33 |
+
def multiply(a: float, b: float) -> float:
|
| 34 |
+
"""
|
| 35 |
+
Multiplies two numbers.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
a: The first number.
|
| 39 |
+
b: The second number.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
The product of a and b.
|
| 43 |
+
"""
|
| 44 |
+
return operator.mul(a, b)
|
| 45 |
+
|
| 46 |
+
@tool("divide_tool", parse_docstring=True)
|
| 47 |
+
def divide(a: float, b: float) -> float:
|
| 48 |
+
"""
|
| 49 |
+
Divides the first number by the second.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
a: The numerator.
|
| 53 |
+
b: The denominator.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
The result of dividing a by b.
|
| 57 |
+
Returns an error message string if division by zero occurs.
|
| 58 |
+
"""
|
| 59 |
+
if b == 0:
|
| 60 |
+
return "Error: Cannot divide by zero."
|
| 61 |
+
return operator.truediv(a, b)
|
tools/multimodal_tools.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import os
|
| 3 |
+
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage
|
| 4 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 5 |
+
from langchain.tools import Tool
|
| 6 |
+
from langchain_core.tools import tool
|
| 7 |
+
|
| 8 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 9 |
+
|
| 10 |
+
# Create LLM class
|
| 11 |
+
vision_llm = ChatGoogleGenerativeAI(
|
| 12 |
+
model= "gemini-2.5-flash-preview-05-20",
|
| 13 |
+
temperature=0,
|
| 14 |
+
max_retries=2,
|
| 15 |
+
google_api_key=api_key
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
@tool("extract_text_tool", parse_docstring=True)
|
| 19 |
+
def extract_text(img_path: str) -> str:
|
| 20 |
+
"""
|
| 21 |
+
Extract text from an image file using a multimodal model.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
img_path: The path to the image file from which to extract text.
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
The extracted text from the image, or an empty string if an error occurs.
|
| 28 |
+
"""
|
| 29 |
+
all_text = ""
|
| 30 |
+
try:
|
| 31 |
+
# Read image and encode as base64
|
| 32 |
+
with open(img_path, "rb") as image_file:
|
| 33 |
+
image_bytes = image_file.read()
|
| 34 |
+
|
| 35 |
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
| 36 |
+
|
| 37 |
+
# Prepare the prompt including the base64 image data
|
| 38 |
+
message = [
|
| 39 |
+
HumanMessage(
|
| 40 |
+
content=[
|
| 41 |
+
{
|
| 42 |
+
"type": "text",
|
| 43 |
+
"text": (
|
| 44 |
+
"Extract all the text from this image. "
|
| 45 |
+
"Return only the extracted text, no explanations."
|
| 46 |
+
),
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"type": "image_url",
|
| 50 |
+
"image_url": {
|
| 51 |
+
"url": f"data:image/png;base64,{image_base64}"
|
| 52 |
+
},
|
| 53 |
+
},
|
| 54 |
+
]
|
| 55 |
+
)
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
# Call the vision-capable model
|
| 59 |
+
response = vision_llm.invoke(message)
|
| 60 |
+
|
| 61 |
+
# Append extracted text
|
| 62 |
+
all_text += response.content + "\n\n"
|
| 63 |
+
|
| 64 |
+
return all_text.strip()
|
| 65 |
+
except Exception as e:
|
| 66 |
+
# A butler should handle errors gracefully
|
| 67 |
+
error_msg = f"Error extracting text: {str(e)}"
|
| 68 |
+
print(error_msg)
|
| 69 |
+
return ""
|
| 70 |
+
|
| 71 |
+
@tool("analyze_image_tool", parse_docstring=True)
|
| 72 |
+
def analyze_image_tool(user_query: str, img_path: str) -> str:
|
| 73 |
+
"""
|
| 74 |
+
Answer the question reasoning on the image.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
user_query: The question to be answered based on the image.
|
| 78 |
+
img_path: Path to the image file to be analyzed.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
The answer to the query based on image content, or an empty string if an error occurs.
|
| 82 |
+
"""
|
| 83 |
+
all_text = ""
|
| 84 |
+
try:
|
| 85 |
+
# Read image and encode as base64
|
| 86 |
+
with open(img_path, "rb") as image_file:
|
| 87 |
+
image_bytes = image_file.read()
|
| 88 |
+
|
| 89 |
+
image_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
| 90 |
+
|
| 91 |
+
# Prepare the prompt including the base64 image data
|
| 92 |
+
message = [
|
| 93 |
+
HumanMessage(
|
| 94 |
+
content=[
|
| 95 |
+
{
|
| 96 |
+
"type": "text",
|
| 97 |
+
"text": (
|
| 98 |
+
f"User query: {user_query}"
|
| 99 |
+
),
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"type": "image_url",
|
| 103 |
+
"image_url": {
|
| 104 |
+
"url": f"data:image/png;base64,{image_base64}"
|
| 105 |
+
},
|
| 106 |
+
},
|
| 107 |
+
]
|
| 108 |
+
)
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
# Call the vision-capable model
|
| 112 |
+
response = vision_llm.invoke(message)
|
| 113 |
+
|
| 114 |
+
# Append extracted text
|
| 115 |
+
all_text += response.content + "\n\n"
|
| 116 |
+
|
| 117 |
+
return all_text.strip()
|
| 118 |
+
except Exception as e:
|
| 119 |
+
# A butler should handle errors gracefully
|
| 120 |
+
error_msg = f"Error analyzing image: {str(e)}"
|
| 121 |
+
print(error_msg)
|
| 122 |
+
return ""
|
| 123 |
+
|
| 124 |
+
@tool("analyze_audio_tool", parse_docstring=True)
|
| 125 |
+
def analyze_audio_tool(user_query: str, audio_path: str) -> str:
|
| 126 |
+
"""Answer the question by reasoning on the provided audio file.
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
user_query: The question to be answered based on the audio content.
|
| 130 |
+
audio_path: Path to the audio file (e.g., .mp3, .wav, .flac, .aac, .ogg).
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
The answer to the query based on audio content, or an error message/empty string if an error occurs.
|
| 134 |
+
"""
|
| 135 |
+
try:
|
| 136 |
+
# Determine MIME type from file extension
|
| 137 |
+
_filename, file_extension = os.path.splitext(audio_path)
|
| 138 |
+
file_extension = file_extension.lower()
|
| 139 |
+
|
| 140 |
+
supported_formats = {
|
| 141 |
+
".mp3": "audio/mp3", ".wav": "audio/wav", ".flac": "audio/flac",
|
| 142 |
+
".aac": "audio/aac", ".ogg": "audio/ogg"
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
if file_extension not in supported_formats:
|
| 146 |
+
return (f"Error: Unsupported audio file format '{file_extension}'. "
|
| 147 |
+
f"Supported extensions: {', '.join(supported_formats.keys())}.")
|
| 148 |
+
mime_type = supported_formats[file_extension]
|
| 149 |
+
|
| 150 |
+
# Read audio file and encode as base64
|
| 151 |
+
with open(audio_path, "rb") as audio_file:
|
| 152 |
+
audio_bytes = audio_file.read()
|
| 153 |
+
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
|
| 154 |
+
|
| 155 |
+
# Prepare the prompt including the base64 audio data
|
| 156 |
+
message = [
|
| 157 |
+
HumanMessage(
|
| 158 |
+
content=[
|
| 159 |
+
{
|
| 160 |
+
"type": "text",
|
| 161 |
+
"text": f"User query: {user_query}",
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"type": "audio",
|
| 165 |
+
"source_type": "base64",
|
| 166 |
+
"mime_type": mime_type,
|
| 167 |
+
"data": audio_base64
|
| 168 |
+
},
|
| 169 |
+
]
|
| 170 |
+
)
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
# Call the vision-capable model
|
| 174 |
+
response = vision_llm.invoke(message)
|
| 175 |
+
return response.content.strip()
|
| 176 |
+
except Exception as e:
|
| 177 |
+
error_msg = f"Error analyzing audio: {str(e)}"
|
| 178 |
+
print(error_msg)
|
| 179 |
+
return ""
|
tools/search_tools.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain.tools import Tool
|
| 3 |
+
from serpapi import GoogleSearch
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 6 |
+
from langchain_core.tools import tool
|
| 7 |
+
|
| 8 |
+
# Carica le variabili d'ambiente se hai la chiave API in un file .env
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY")
|
| 12 |
+
|
| 13 |
+
search_tool = TavilySearchResults(
|
| 14 |
+
name="tavily_web_search", # Puoi personalizzare il nome se vuoi
|
| 15 |
+
description="Esegue una ricerca web avanzata utilizzando Tavily per informazioni aggiornate e complete. Utile per domande complesse o che richiedono dati recenti. Può essere utile fare più ricerche modificando la query per ottenere risultati migliori.", # Descrizione per l'LLM
|
| 16 |
+
max_results=5
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
@tool("serpapi_search_tool", parse_docstring=True)
|
| 20 |
+
def serpapi_search(query: str, num_results: int = 5, gl: str = "it", hl: str = "it") -> str:
|
| 21 |
+
"""
|
| 22 |
+
Esegue una ricerca sul web utilizzando SerpAPI con Google Search e restituisce i risultati formattati.
|
| 23 |
+
Questo tool ha un costo elevato, pertanto sono da preferire altri tool se disponibili.
|
| 24 |
+
Richiamare questo tool soltanto in caso gli altri tool non siano stati soddisfacenti.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
query: La query di ricerca.
|
| 28 |
+
num_results: Il numero di risultati da restituire.
|
| 29 |
+
gl: Codice del paese per la geolocalizzazione dei risultati (es. "it" per Italia).
|
| 30 |
+
hl: Codice della lingua per i risultati della ricerca (es. "it" per Italiano).
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
Una stringa formattata con i risultati della ricerca o un messaggio di errore.
|
| 34 |
+
"""
|
| 35 |
+
if not SERPAPI_API_KEY:
|
| 36 |
+
return "Errore: La variabile d'ambiente SERPAPI_API_KEY non è impostata."
|
| 37 |
+
|
| 38 |
+
params = {
|
| 39 |
+
"engine": "google",
|
| 40 |
+
"q": query,
|
| 41 |
+
"api_key": SERPAPI_API_KEY,
|
| 42 |
+
"num": num_results,
|
| 43 |
+
"gl": gl,
|
| 44 |
+
"hl": hl
|
| 45 |
+
}
|
| 46 |
+
search = GoogleSearch(params)
|
| 47 |
+
results = search.get_dict()
|
| 48 |
+
organic_results = results.get("organic_results", [])
|
| 49 |
+
|
| 50 |
+
if not organic_results:
|
| 51 |
+
return f"Nessun risultato trovato per '{query}'."
|
| 52 |
+
|
| 53 |
+
formatted_results = "\n\n".join([f"Title: {res.get('title')}\nLink: {res.get('link')}\nSnippet: {res.get('snippet')}" for res in organic_results])
|
| 54 |
+
return formatted_results
|
tools/youtube_tools.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.tools import tool
|
| 2 |
+
from youtube_transcript_api import YouTubeTranscriptApi, NoTranscriptFound, TranscriptsDisabled
|
| 3 |
+
|
| 4 |
+
@tool("youtube_transcript_extractor", parse_docstring=True)
|
| 5 |
+
def extract_youtube_transcript(youtube_url: str) -> str:
|
| 6 |
+
"""
|
| 7 |
+
Extracts the transcript from a given YouTube video URL.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
youtube_url: The URL of the YouTube video.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
The transcript as a single string, or an error message if the transcript
|
| 14 |
+
cannot be found or an error occurs.
|
| 15 |
+
"""
|
| 16 |
+
try:
|
| 17 |
+
video_id = youtube_url.split("v=")[1].split("&")[0]
|
| 18 |
+
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
|
| 19 |
+
transcript = " ".join([item['text'] for item in transcript_list])
|
| 20 |
+
return transcript
|
| 21 |
+
except NoTranscriptFound:
|
| 22 |
+
return "Error: No transcript found for this video. It might be disabled or not available in English."
|
| 23 |
+
except TranscriptsDisabled:
|
| 24 |
+
return "Error: Transcripts are disabled for this video."
|
| 25 |
+
except Exception as e:
|
| 26 |
+
return f"Error extracting transcript: {str(e)}"
|