Spaces:
Runtime error
Runtime error
| """ | |
| Advanced Agentic System | |
| ---------------------- | |
| A sophisticated multi-agent system with: | |
| Core Components: | |
| 1. Agent Management | |
| 2. Task Execution | |
| 3. Learning & Adaptation | |
| 4. Communication | |
| 5. Resource Management | |
| Advanced Features: | |
| 1. Self-Improvement | |
| 2. Multi-Agent Coordination | |
| 3. Dynamic Role Assignment | |
| 4. Emergent Behavior | |
| """ | |
| import logging | |
| from typing import Dict, Any, List, Optional, Union, TypeVar | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| import json | |
| import asyncio | |
| from datetime import datetime | |
| import uuid | |
| from concurrent.futures import ThreadPoolExecutor | |
| import numpy as np | |
| from collections import defaultdict | |
| from orchestrator import ( | |
| AgentOrchestrator, | |
| AgentRole, | |
| AgentState, | |
| TaskPriority, | |
| Task | |
| ) | |
| from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode | |
| from reasoning.meta_learning import MetaLearningStrategy | |
| class AgentCapability(Enum): | |
| """Core capabilities of agents.""" | |
| REASONING = "reasoning" | |
| LEARNING = "learning" | |
| EXECUTION = "execution" | |
| COORDINATION = "coordination" | |
| MONITORING = "monitoring" | |
| class AgentPersonality(Enum): | |
| """Different personality types for agents.""" | |
| ANALYTICAL = "analytical" | |
| CREATIVE = "creative" | |
| CAUTIOUS = "cautious" | |
| PROACTIVE = "proactive" | |
| ADAPTIVE = "adaptive" | |
| class AgentProfile: | |
| """Profile defining an agent's characteristics.""" | |
| id: str | |
| name: str | |
| role: AgentRole | |
| capabilities: List[AgentCapability] | |
| personality: AgentPersonality | |
| expertise_areas: List[str] | |
| learning_rate: float | |
| risk_tolerance: float | |
| created_at: datetime | |
| metadata: Dict[str, Any] | |
| class Agent: | |
| """Advanced autonomous agent with learning capabilities.""" | |
| def __init__( | |
| self, | |
| profile: AgentProfile, | |
| reasoning_engine: ReasoningEngine, | |
| meta_learning: MetaLearningStrategy, | |
| config: Dict[str, Any] = None | |
| ): | |
| self.profile = profile | |
| self.reasoning_engine = reasoning_engine | |
| self.meta_learning = meta_learning | |
| self.config = config or {} | |
| # State management | |
| self.state = AgentState.IDLE | |
| self.current_task: Optional[Task] = None | |
| self.task_history: List[Task] = [] | |
| # Learning and adaptation | |
| self.knowledge_base: Dict[str, Any] = {} | |
| self.learned_patterns: List[Dict[str, Any]] = [] | |
| self.adaptation_history: List[Dict[str, Any]] = [] | |
| # Performance metrics | |
| self.metrics: Dict[str, List[float]] = defaultdict(list) | |
| self.performance_history: List[Dict[str, float]] = [] | |
| # Communication | |
| self.message_queue = asyncio.Queue() | |
| self.response_queue = asyncio.Queue() | |
| # Resource management | |
| self.resource_usage: Dict[str, float] = {} | |
| self.resource_limits: Dict[str, float] = {} | |
| # Async support | |
| self.executor = ThreadPoolExecutor(max_workers=2) | |
| self.lock = asyncio.Lock() | |
| # Logging | |
| self.logger = logging.getLogger(f"Agent-{profile.id}") | |
| # Initialize components | |
| self._init_components() | |
| def _init_components(self): | |
| """Initialize agent components.""" | |
| # Set up knowledge base | |
| self.knowledge_base = { | |
| "expertise": {area: 0.5 for area in self.profile.expertise_areas}, | |
| "learned_skills": set(), | |
| "interaction_patterns": defaultdict(int), | |
| "success_patterns": defaultdict(float) | |
| } | |
| # Set up resource limits | |
| self.resource_limits = { | |
| "cpu": 1.0, | |
| "memory": 1000, | |
| "api_calls": 100, | |
| "learning_capacity": 0.8 | |
| } | |
| async def process_task(self, task: Task) -> Dict[str, Any]: | |
| """Process an assigned task.""" | |
| try: | |
| self.current_task = task | |
| self.state = AgentState.BUSY | |
| # Analyze task | |
| analysis = await self._analyze_task(task) | |
| # Plan execution | |
| plan = await self._plan_execution(analysis) | |
| # Execute plan | |
| result = await self._execute_plan(plan) | |
| # Learn from execution | |
| await self._learn_from_execution(task, result) | |
| # Update metrics | |
| self._update_metrics(task, result) | |
| return { | |
| "success": True, | |
| "task_id": task.id, | |
| "result": result, | |
| "metrics": self._get_execution_metrics() | |
| } | |
| except Exception as e: | |
| self.logger.error(f"Error processing task: {e}") | |
| self.state = AgentState.ERROR | |
| return { | |
| "success": False, | |
| "task_id": task.id, | |
| "error": str(e) | |
| } | |
| finally: | |
| self.state = AgentState.IDLE | |
| self.current_task = None | |
| async def _analyze_task(self, task: Task) -> Dict[str, Any]: | |
| """Analyze task requirements and constraints.""" | |
| # Use reasoning engine for analysis | |
| analysis = await self.reasoning_engine.reason( | |
| query=task.description, | |
| context={ | |
| "agent_profile": self.profile.__dict__, | |
| "task_history": self.task_history, | |
| "knowledge_base": self.knowledge_base | |
| }, | |
| mode=ReasoningMode.ANALYTICAL | |
| ) | |
| return { | |
| "requirements": analysis.get("requirements", []), | |
| "constraints": analysis.get("constraints", []), | |
| "complexity": analysis.get("complexity", 0.5), | |
| "estimated_duration": analysis.get("estimated_duration", 3600), | |
| "required_capabilities": analysis.get("required_capabilities", []) | |
| } | |
| async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Plan task execution based on analysis.""" | |
| # Use reasoning engine for planning | |
| plan = await self.reasoning_engine.reason( | |
| query="Plan execution steps", | |
| context={ | |
| "analysis": analysis, | |
| "agent_capabilities": self.profile.capabilities, | |
| "resource_limits": self.resource_limits | |
| }, | |
| mode=ReasoningMode.FOCUSED | |
| ) | |
| return plan.get("steps", []) | |
| async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]: | |
| """Execute the planned steps.""" | |
| results = [] | |
| for step in plan: | |
| try: | |
| # Check resources | |
| if not self._check_resources(step): | |
| raise RuntimeError("Insufficient resources for step execution") | |
| # Execute step | |
| step_result = await self._execute_step(step) | |
| results.append(step_result) | |
| # Update resource usage | |
| self._update_resource_usage(step) | |
| # Learn from step execution | |
| await self._learn_from_step(step, step_result) | |
| except Exception as e: | |
| self.logger.error(f"Error executing step: {e}") | |
| results.append({"error": str(e)}) | |
| return { | |
| "success": all(r.get("success", False) for r in results), | |
| "results": results | |
| } | |
| async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
| """Execute a single step of the plan.""" | |
| step_type = step.get("type", "unknown") | |
| if step_type == "reasoning": | |
| return await self._execute_reasoning_step(step) | |
| elif step_type == "learning": | |
| return await self._execute_learning_step(step) | |
| elif step_type == "action": | |
| return await self._execute_action_step(step) | |
| else: | |
| raise ValueError(f"Unknown step type: {step_type}") | |
| async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
| """Execute a reasoning step.""" | |
| result = await self.reasoning_engine.reason( | |
| query=step["query"], | |
| context=step.get("context", {}), | |
| mode=ReasoningMode.ANALYTICAL | |
| ) | |
| return { | |
| "success": result.get("success", False), | |
| "reasoning_result": result | |
| } | |
| async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
| """Execute a learning step.""" | |
| result = await self.meta_learning.learn( | |
| data=step["data"], | |
| context=step.get("context", {}) | |
| ) | |
| return { | |
| "success": result.get("success", False), | |
| "learning_result": result | |
| } | |
| async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
| """Execute an action step.""" | |
| action_type = step.get("action_type") | |
| if action_type == "api_call": | |
| return await self._make_api_call(step) | |
| elif action_type == "data_processing": | |
| return await self._process_data(step) | |
| elif action_type == "coordination": | |
| return await self._coordinate_action(step) | |
| else: | |
| raise ValueError(f"Unknown action type: {action_type}") | |
| def _check_resources(self, step: Dict[str, Any]) -> bool: | |
| """Check if sufficient resources are available.""" | |
| required_resources = step.get("required_resources", {}) | |
| for resource, amount in required_resources.items(): | |
| if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')): | |
| return False | |
| return True | |
| def _update_resource_usage(self, step: Dict[str, Any]): | |
| """Update resource usage after step execution.""" | |
| used_resources = step.get("used_resources", {}) | |
| for resource, amount in used_resources.items(): | |
| self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount | |
| async def _learn_from_execution(self, task: Task, result: Dict[str, Any]): | |
| """Learn from task execution experience.""" | |
| # Prepare learning data | |
| learning_data = { | |
| "task": task.__dict__, | |
| "result": result, | |
| "context": { | |
| "agent_state": self.state, | |
| "resource_usage": self.resource_usage, | |
| "performance_metrics": self._get_execution_metrics() | |
| } | |
| } | |
| # Learn patterns | |
| patterns = await self.meta_learning.learn( | |
| data=learning_data, | |
| context=self.knowledge_base | |
| ) | |
| # Update knowledge base | |
| self._update_knowledge_base(patterns) | |
| # Record adaptation | |
| self.adaptation_history.append({ | |
| "timestamp": datetime.now(), | |
| "patterns": patterns, | |
| "metrics": self._get_execution_metrics() | |
| }) | |
| async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]): | |
| """Learn from individual step execution.""" | |
| if result.get("success", False): | |
| # Update success patterns | |
| pattern_key = f"{step['type']}:{step.get('action_type', 'none')}" | |
| self.knowledge_base["success_patterns"][pattern_key] += 1 | |
| # Learn from successful execution | |
| await self.meta_learning.learn( | |
| data={ | |
| "step": step, | |
| "result": result | |
| }, | |
| context={"pattern_key": pattern_key} | |
| ) | |
| def _update_knowledge_base(self, patterns: Dict[str, Any]): | |
| """Update knowledge base with new patterns.""" | |
| # Update expertise levels | |
| for area, pattern in patterns.get("expertise_patterns", {}).items(): | |
| if area in self.knowledge_base["expertise"]: | |
| current = self.knowledge_base["expertise"][area] | |
| self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1 | |
| # Add new learned skills | |
| new_skills = patterns.get("learned_skills", set()) | |
| self.knowledge_base["learned_skills"].update(new_skills) | |
| # Update interaction patterns | |
| for pattern, count in patterns.get("interaction_patterns", {}).items(): | |
| self.knowledge_base["interaction_patterns"][pattern] += count | |
| def _update_metrics(self, task: Task, result: Dict[str, Any]): | |
| """Update performance metrics.""" | |
| metrics = { | |
| "success": float(result.get("success", False)), | |
| "duration": (datetime.now() - task.created_at).total_seconds(), | |
| "resource_efficiency": self._calculate_resource_efficiency(), | |
| "learning_progress": self._calculate_learning_progress() | |
| } | |
| for key, value in metrics.items(): | |
| self.metrics[key].append(value) | |
| self.performance_history.append({ | |
| "timestamp": datetime.now(), | |
| "metrics": metrics | |
| }) | |
| def _calculate_resource_efficiency(self) -> float: | |
| """Calculate resource usage efficiency.""" | |
| if not self.resource_limits: | |
| return 1.0 | |
| efficiencies = [] | |
| for resource, usage in self.resource_usage.items(): | |
| limit = self.resource_limits.get(resource, float('inf')) | |
| if limit > 0: | |
| efficiencies.append(1 - (usage / limit)) | |
| return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0 | |
| def _calculate_learning_progress(self) -> float: | |
| """Calculate learning progress.""" | |
| if not self.knowledge_base["expertise"]: | |
| return 0.0 | |
| return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"]) | |
| def _get_execution_metrics(self) -> Dict[str, float]: | |
| """Get current execution metrics.""" | |
| return { | |
| key: sum(values[-10:]) / len(values[-10:]) | |
| for key, values in self.metrics.items() | |
| if values | |
| } | |
| class AgenticSystem: | |
| """Advanced multi-agent system with orchestration.""" | |
| def __init__(self, config: Dict[str, Any] = None): | |
| self.config = config or {} | |
| # Initialize orchestrator | |
| self.orchestrator = AgentOrchestrator(config) | |
| # Initialize components | |
| self.agents: Dict[str, Agent] = {} | |
| self.reasoning_engine = ReasoningEngine( | |
| min_confidence=self.config.get('min_confidence', 0.7), | |
| parallel_threshold=self.config.get('parallel_threshold', 3), | |
| learning_rate=self.config.get('learning_rate', 0.1), | |
| strategy_weights=self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| ) | |
| self.meta_learning = MetaLearningStrategy(config) | |
| # System state | |
| self.state = "initialized" | |
| self.metrics: Dict[str, List[float]] = defaultdict(list) | |
| # Async support | |
| self.executor = ThreadPoolExecutor(max_workers=4) | |
| self.lock = asyncio.Lock() | |
| # Logging | |
| self.logger = logging.getLogger("AgenticSystem") | |
| async def create_agent( | |
| self, | |
| name: str, | |
| role: AgentRole, | |
| capabilities: List[AgentCapability], | |
| personality: AgentPersonality, | |
| expertise_areas: List[str] | |
| ) -> str: | |
| """Create a new agent.""" | |
| # Create agent profile | |
| profile = AgentProfile( | |
| id=str(uuid.uuid4()), | |
| name=name, | |
| role=role, | |
| capabilities=capabilities, | |
| personality=personality, | |
| expertise_areas=expertise_areas, | |
| learning_rate=0.1, | |
| risk_tolerance=0.5, | |
| created_at=datetime.now(), | |
| metadata={} | |
| ) | |
| # Create agent instance | |
| agent = Agent( | |
| profile=profile, | |
| reasoning_engine=self.reasoning_engine, | |
| meta_learning=self.meta_learning, | |
| config=self.config.get("agent_config", {}) | |
| ) | |
| # Register with orchestrator | |
| agent_id = await self.orchestrator.register_agent( | |
| role=role, | |
| capabilities=[c.value for c in capabilities] | |
| ) | |
| # Store agent | |
| async with self.lock: | |
| self.agents[agent_id] = agent | |
| return agent_id | |
| async def submit_task( | |
| self, | |
| description: str, | |
| priority: TaskPriority = TaskPriority.MEDIUM, | |
| deadline: Optional[datetime] = None | |
| ) -> str: | |
| """Submit a task to the system.""" | |
| return await self.orchestrator.submit_task( | |
| description=description, | |
| priority=priority, | |
| deadline=deadline | |
| ) | |
| async def get_task_status(self, task_id: str) -> Dict[str, Any]: | |
| """Get status of a task.""" | |
| return await self.orchestrator.get_task_status(task_id) | |
| async def get_agent_status(self, agent_id: str) -> Dict[str, Any]: | |
| """Get status of an agent.""" | |
| agent = self.agents.get(agent_id) | |
| if not agent: | |
| raise ValueError(f"Unknown agent: {agent_id}") | |
| return { | |
| "profile": agent.profile.__dict__, | |
| "state": agent.state, | |
| "current_task": agent.current_task.__dict__ if agent.current_task else None, | |
| "metrics": agent._get_execution_metrics(), | |
| "resource_usage": agent.resource_usage | |
| } | |
| async def get_system_status(self) -> Dict[str, Any]: | |
| """Get overall system status.""" | |
| return { | |
| "state": self.state, | |
| "agent_count": len(self.agents), | |
| "active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]), | |
| "performance_metrics": self._calculate_system_metrics(), | |
| "resource_usage": self._calculate_resource_usage() | |
| } | |
| def _calculate_system_metrics(self) -> Dict[str, float]: | |
| """Calculate overall system metrics.""" | |
| metrics = defaultdict(list) | |
| for agent in self.agents.values(): | |
| agent_metrics = agent._get_execution_metrics() | |
| for key, value in agent_metrics.items(): | |
| metrics[key].append(value) | |
| return { | |
| key: sum(values) / len(values) | |
| for key, values in metrics.items() | |
| if values | |
| } | |
| def _calculate_resource_usage(self) -> Dict[str, float]: | |
| """Calculate overall resource usage.""" | |
| usage = defaultdict(float) | |
| for agent in self.agents.values(): | |
| for resource, amount in agent.resource_usage.items(): | |
| usage[resource] += amount | |
| return dict(usage) | |