Spaces:
Runtime error
Runtime error
| """ | |
| Meta-Learning System | |
| ------------------ | |
| Implements meta-learning capabilities for improved learning and adaptation. | |
| """ | |
| from typing import Dict, Any, List, Optional, Tuple | |
| import numpy as np | |
| from dataclasses import dataclass, field | |
| import logging | |
| from datetime import datetime | |
| from enum import Enum | |
| import json | |
| from quantum_learning import QuantumLearningSystem, Pattern, PatternType | |
| class LearningStrategy(Enum): | |
| GRADIENT_BASED = "gradient_based" | |
| MEMORY_BASED = "memory_based" | |
| EVOLUTIONARY = "evolutionary" | |
| REINFORCEMENT = "reinforcement" | |
| QUANTUM = "quantum" | |
| class MetaParameters: | |
| """Meta-parameters for learning strategies""" | |
| learning_rate: float = 0.01 | |
| memory_size: int = 1000 | |
| evolution_rate: float = 0.1 | |
| exploration_rate: float = 0.2 | |
| quantum_interference: float = 0.5 | |
| adaptation_threshold: float = 0.7 | |
| class LearningMetrics: | |
| """Metrics for learning performance""" | |
| accuracy: float | |
| convergence_rate: float | |
| adaptation_speed: float | |
| resource_usage: float | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class MetaLearningSystem: | |
| """Meta-learning system for optimizing learning strategies""" | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| self.logger = logging.getLogger(__name__) | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Initialize quantum system with shared config | |
| quantum_config = { | |
| 'min_confidence': self.min_confidence, | |
| 'parallel_threshold': self.parallel_threshold, | |
| 'learning_rate': self.learning_rate, | |
| 'strategy_weights': self.strategy_weights, | |
| 'num_qubits': self.config.get('num_qubits', 8), | |
| 'entanglement_strength': self.config.get('entanglement_strength', 0.5), | |
| 'interference_threshold': self.config.get('interference_threshold', 0.3), | |
| 'tunneling_rate': self.config.get('tunneling_rate', 0.1), | |
| 'annealing_schedule': self.config.get('annealing_schedule', { | |
| 'initial_temp': 1.0, | |
| 'final_temp': 0.01, | |
| 'steps': 100, | |
| 'cooling_rate': 0.95 | |
| }) | |
| } | |
| self.quantum_system = QuantumLearningSystem(quantum_config) | |
| self.strategies = {} | |
| self.performance_history = [] | |
| self.meta_parameters = MetaParameters() | |
| async def optimize_learning( | |
| self, | |
| observation: Dict[str, Any], | |
| current_strategy: LearningStrategy | |
| ) -> Tuple[Dict[str, Any], LearningMetrics]: | |
| """Optimize learning strategy based on observation""" | |
| try: | |
| # Process with quantum system | |
| quantum_result = await self.quantum_system.process_observation(observation) | |
| # Evaluate current strategy | |
| current_metrics = self._evaluate_strategy( | |
| current_strategy, | |
| observation, | |
| quantum_result | |
| ) | |
| # Update performance history | |
| self._update_performance_history(current_metrics) | |
| # Adapt meta-parameters | |
| self._adapt_meta_parameters(current_metrics) | |
| # Select optimal strategy | |
| optimal_strategy = self._select_optimal_strategy( | |
| observation, | |
| current_metrics | |
| ) | |
| # Apply selected strategy | |
| result = await self._apply_strategy( | |
| optimal_strategy, | |
| observation, | |
| quantum_result | |
| ) | |
| return result, current_metrics | |
| except Exception as e: | |
| self.logger.error(f"Failed to optimize learning: {str(e)}") | |
| raise | |
| def _evaluate_strategy( | |
| self, | |
| strategy: LearningStrategy, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> LearningMetrics: | |
| """Evaluate performance of current learning strategy""" | |
| # Calculate accuracy | |
| accuracy = self._calculate_accuracy( | |
| strategy, | |
| observation, | |
| quantum_result | |
| ) | |
| # Calculate convergence rate | |
| convergence_rate = self._calculate_convergence_rate( | |
| strategy, | |
| self.performance_history | |
| ) | |
| # Calculate adaptation speed | |
| adaptation_speed = self._calculate_adaptation_speed( | |
| strategy, | |
| observation | |
| ) | |
| # Calculate resource usage | |
| resource_usage = self._calculate_resource_usage(strategy) | |
| return LearningMetrics( | |
| accuracy=accuracy, | |
| convergence_rate=convergence_rate, | |
| adaptation_speed=adaptation_speed, | |
| resource_usage=resource_usage | |
| ) | |
| def _update_performance_history( | |
| self, | |
| metrics: LearningMetrics | |
| ) -> None: | |
| """Update performance history with new metrics""" | |
| self.performance_history.append(metrics) | |
| # Maintain history size | |
| if len(self.performance_history) > self.meta_parameters.memory_size: | |
| self.performance_history.pop(0) | |
| def _adapt_meta_parameters( | |
| self, | |
| metrics: LearningMetrics | |
| ) -> None: | |
| """Adapt meta-parameters based on performance metrics""" | |
| # Adjust learning rate | |
| if metrics.convergence_rate < self.meta_parameters.adaptation_threshold: | |
| self.meta_parameters.learning_rate *= 0.9 | |
| else: | |
| self.meta_parameters.learning_rate *= 1.1 | |
| # Adjust memory size | |
| if metrics.resource_usage > 0.8: | |
| self.meta_parameters.memory_size = int( | |
| self.meta_parameters.memory_size * 0.9 | |
| ) | |
| elif metrics.resource_usage < 0.2: | |
| self.meta_parameters.memory_size = int( | |
| self.meta_parameters.memory_size * 1.1 | |
| ) | |
| # Adjust evolution rate | |
| if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold: | |
| self.meta_parameters.evolution_rate *= 1.1 | |
| else: | |
| self.meta_parameters.evolution_rate *= 0.9 | |
| # Adjust exploration rate | |
| if metrics.accuracy < self.meta_parameters.adaptation_threshold: | |
| self.meta_parameters.exploration_rate *= 1.1 | |
| else: | |
| self.meta_parameters.exploration_rate *= 0.9 | |
| # Adjust quantum interference | |
| if metrics.accuracy > 0.8: | |
| self.meta_parameters.quantum_interference *= 1.1 | |
| else: | |
| self.meta_parameters.quantum_interference *= 0.9 | |
| # Ensure parameters stay within reasonable bounds | |
| self._normalize_parameters() | |
| def _normalize_parameters(self) -> None: | |
| """Normalize meta-parameters to stay within bounds""" | |
| self.meta_parameters.learning_rate = np.clip( | |
| self.meta_parameters.learning_rate, | |
| 0.001, | |
| 0.1 | |
| ) | |
| self.meta_parameters.memory_size = np.clip( | |
| self.meta_parameters.memory_size, | |
| 100, | |
| 10000 | |
| ) | |
| self.meta_parameters.evolution_rate = np.clip( | |
| self.meta_parameters.evolution_rate, | |
| 0.01, | |
| 0.5 | |
| ) | |
| self.meta_parameters.exploration_rate = np.clip( | |
| self.meta_parameters.exploration_rate, | |
| 0.1, | |
| 0.9 | |
| ) | |
| self.meta_parameters.quantum_interference = np.clip( | |
| self.meta_parameters.quantum_interference, | |
| 0.1, | |
| 0.9 | |
| ) | |
| def _select_optimal_strategy( | |
| self, | |
| observation: Dict[str, Any], | |
| metrics: LearningMetrics | |
| ) -> LearningStrategy: | |
| """Select optimal learning strategy""" | |
| strategies = list(LearningStrategy) | |
| scores = [] | |
| for strategy in strategies: | |
| # Calculate strategy score | |
| score = self._calculate_strategy_score( | |
| strategy, | |
| observation, | |
| metrics | |
| ) | |
| scores.append((strategy, score)) | |
| # Select strategy with highest score | |
| optimal_strategy = max(scores, key=lambda x: x[1])[0] | |
| return optimal_strategy | |
| async def _apply_strategy( | |
| self, | |
| strategy: LearningStrategy, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply selected learning strategy""" | |
| if strategy == LearningStrategy.GRADIENT_BASED: | |
| return await self._apply_gradient_strategy( | |
| observation, | |
| quantum_result | |
| ) | |
| elif strategy == LearningStrategy.MEMORY_BASED: | |
| return await self._apply_memory_strategy( | |
| observation, | |
| quantum_result | |
| ) | |
| elif strategy == LearningStrategy.EVOLUTIONARY: | |
| return await self._apply_evolutionary_strategy( | |
| observation, | |
| quantum_result | |
| ) | |
| elif strategy == LearningStrategy.REINFORCEMENT: | |
| return await self._apply_reinforcement_strategy( | |
| observation, | |
| quantum_result | |
| ) | |
| else: # QUANTUM | |
| return quantum_result | |
| def _calculate_accuracy( | |
| self, | |
| strategy: LearningStrategy, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> float: | |
| """Calculate accuracy of learning strategy""" | |
| if "patterns" not in quantum_result: | |
| return 0.0 | |
| patterns = quantum_result["patterns"] | |
| if not patterns: | |
| return 0.0 | |
| # Calculate pattern confidence | |
| confidence_sum = sum(pattern.confidence for pattern in patterns) | |
| return confidence_sum / len(patterns) | |
| def _calculate_convergence_rate( | |
| self, | |
| strategy: LearningStrategy, | |
| history: List[LearningMetrics] | |
| ) -> float: | |
| """Calculate convergence rate of learning strategy""" | |
| if not history: | |
| return 0.0 | |
| # Calculate rate of improvement | |
| accuracies = [metrics.accuracy for metrics in history[-10:]] | |
| if len(accuracies) < 2: | |
| return 0.0 | |
| differences = np.diff(accuracies) | |
| return float(np.mean(differences > 0)) | |
| def _calculate_adaptation_speed( | |
| self, | |
| strategy: LearningStrategy, | |
| observation: Dict[str, Any] | |
| ) -> float: | |
| """Calculate adaptation speed of learning strategy""" | |
| if not self.performance_history: | |
| return 0.0 | |
| # Calculate time to reach adaptation threshold | |
| threshold = self.meta_parameters.adaptation_threshold | |
| for i, metrics in enumerate(self.performance_history): | |
| if metrics.accuracy >= threshold: | |
| return 1.0 / (i + 1) | |
| return 0.0 | |
| def _calculate_resource_usage( | |
| self, | |
| strategy: LearningStrategy | |
| ) -> float: | |
| """Calculate resource usage of learning strategy""" | |
| # Simulate resource usage based on strategy | |
| base_usage = { | |
| LearningStrategy.GRADIENT_BASED: 0.4, | |
| LearningStrategy.MEMORY_BASED: 0.6, | |
| LearningStrategy.EVOLUTIONARY: 0.7, | |
| LearningStrategy.REINFORCEMENT: 0.5, | |
| LearningStrategy.QUANTUM: 0.8 | |
| } | |
| return base_usage[strategy] | |
| def _calculate_strategy_score( | |
| self, | |
| strategy: LearningStrategy, | |
| observation: Dict[str, Any], | |
| metrics: LearningMetrics | |
| ) -> float: | |
| """Calculate score for learning strategy""" | |
| # Weight different factors | |
| weights = { | |
| "accuracy": 0.4, | |
| "convergence": 0.2, | |
| "adaptation": 0.2, | |
| "resources": 0.2 | |
| } | |
| score = ( | |
| weights["accuracy"] * metrics.accuracy + | |
| weights["convergence"] * metrics.convergence_rate + | |
| weights["adaptation"] * metrics.adaptation_speed + | |
| weights["resources"] * (1 - metrics.resource_usage) | |
| ) | |
| # Add exploration bonus | |
| if np.random.random() < self.meta_parameters.exploration_rate: | |
| score += 0.1 | |
| return score | |
| async def _apply_gradient_strategy( | |
| self, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply gradient-based learning strategy""" | |
| return { | |
| "result": "gradient_optimization", | |
| "quantum_enhanced": quantum_result, | |
| "meta_parameters": self.meta_parameters.__dict__ | |
| } | |
| async def _apply_memory_strategy( | |
| self, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply memory-based learning strategy""" | |
| return { | |
| "result": "memory_optimization", | |
| "quantum_enhanced": quantum_result, | |
| "meta_parameters": self.meta_parameters.__dict__ | |
| } | |
| async def _apply_evolutionary_strategy( | |
| self, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply evolutionary learning strategy""" | |
| return { | |
| "result": "evolutionary_optimization", | |
| "quantum_enhanced": quantum_result, | |
| "meta_parameters": self.meta_parameters.__dict__ | |
| } | |
| async def _apply_reinforcement_strategy( | |
| self, | |
| observation: Dict[str, Any], | |
| quantum_result: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Apply reinforcement learning strategy""" | |
| return { | |
| "result": "reinforcement_optimization", | |
| "quantum_enhanced": quantum_result, | |
| "meta_parameters": self.meta_parameters.__dict__ | |
| } | |