Spaces:
Runtime error
Runtime error
| """ | |
| Quantum Learning System | |
| --------------------- | |
| Implements quantum-inspired learning algorithms for enhanced pattern recognition | |
| and optimization. | |
| """ | |
| from typing import Dict, Any, List, Optional, Tuple | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| import numpy as np | |
| from datetime import datetime | |
| class PatternType(Enum): | |
| """Types of quantum learning patterns.""" | |
| SUPERPOSITION = "superposition" | |
| ENTANGLEMENT = "entanglement" | |
| INTERFERENCE = "interference" | |
| TUNNELING = "tunneling" | |
| ANNEALING = "annealing" | |
| class Pattern: | |
| """Quantum pattern representation.""" | |
| type: PatternType | |
| amplitude: complex | |
| phase: float | |
| entanglement_partners: List[str] | |
| interference_score: float | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| timestamp: datetime = field(default_factory=datetime.now) | |
| class QuantumLearningSystem: | |
| """ | |
| Advanced quantum-inspired learning system that: | |
| 1. Uses quantum superposition for parallel pattern matching | |
| 2. Leverages quantum entanglement for correlated learning | |
| 3. Applies quantum interference for optimization | |
| 4. Implements quantum tunneling for escaping local optima | |
| 5. Uses quantum annealing for global optimization | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize quantum learning system.""" | |
| self.config = config or {} | |
| # Quantum system parameters | |
| self.num_qubits = self.config.get('num_qubits', 8) | |
| self.entanglement_strength = self.config.get('entanglement_strength', 0.5) | |
| self.interference_threshold = self.config.get('interference_threshold', 0.3) | |
| self.tunneling_rate = self.config.get('tunneling_rate', 0.1) | |
| self.annealing_schedule = self.config.get('annealing_schedule', { | |
| 'initial_temp': 1.0, | |
| 'final_temp': 0.01, | |
| 'steps': 100, | |
| 'cooling_rate': 0.95 | |
| }) | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Initialize quantum state | |
| self.state = np.zeros((2**self.num_qubits,), dtype=complex) | |
| self.state[0] = 1.0 # Initialize to |0⟩ state | |
| # Pattern storage | |
| self.patterns: Dict[str, Pattern] = {} | |
| self.entanglement_graph: Dict[str, List[str]] = {} | |
| # Performance tracking | |
| self.interference_history: List[float] = [] | |
| self.tunneling_events: List[Dict[str, Any]] = [] | |
| self.optimization_trace: List[float] = [] | |
| def create_superposition(self, patterns: List[Pattern]) -> np.ndarray: | |
| """Create quantum superposition of patterns.""" | |
| n_patterns = len(patterns) | |
| amplitude = 1.0 / np.sqrt(n_patterns) | |
| superposition = np.zeros_like(self.state) | |
| for i, pattern in enumerate(patterns): | |
| # Convert pattern to quantum state | |
| pattern_state = self._pattern_to_quantum_state(pattern) | |
| # Add to superposition with equal amplitude | |
| superposition += amplitude * pattern_state | |
| return superposition | |
| def apply_entanglement(self, pattern1: Pattern, pattern2: Pattern) -> Tuple[Pattern, Pattern]: | |
| """Apply quantum entanglement between patterns.""" | |
| # Create entanglement between patterns | |
| if self.entanglement_strength > np.random.random(): | |
| pattern1.entanglement_partners.append(pattern2.type.value) | |
| pattern2.entanglement_partners.append(pattern1.type.value) | |
| # Update entanglement graph | |
| self.entanglement_graph.setdefault(pattern1.type.value, []).append(pattern2.type.value) | |
| self.entanglement_graph.setdefault(pattern2.type.value, []).append(pattern1.type.value) | |
| # Modify pattern properties based on entanglement | |
| shared_phase = (pattern1.phase + pattern2.phase) / 2 | |
| pattern1.phase = pattern2.phase = shared_phase | |
| return pattern1, pattern2 | |
| def measure_interference(self, patterns: List[Pattern]) -> float: | |
| """Measure quantum interference between patterns.""" | |
| total_interference = 0.0 | |
| for i, p1 in enumerate(patterns): | |
| for p2 in patterns[i+1:]: | |
| # Calculate interference based on phase difference | |
| phase_diff = abs(p1.phase - p2.phase) | |
| interference = np.cos(phase_diff) * abs(p1.amplitude * p2.amplitude) | |
| # Update interference scores | |
| p1.interference_score = p2.interference_score = interference | |
| total_interference += interference | |
| self.interference_history.append(total_interference) | |
| return total_interference | |
| def quantum_tunneling(self, pattern: Pattern, energy_landscape: Dict[str, float]) -> Pattern: | |
| """Apply quantum tunneling to escape local optima.""" | |
| current_energy = energy_landscape.get(pattern.type.value, float('inf')) | |
| # Attempt tunneling with probability based on tunneling rate | |
| if np.random.random() < self.tunneling_rate: | |
| # Find neighboring states | |
| neighbors = self._find_neighboring_states(pattern) | |
| for neighbor in neighbors: | |
| neighbor_energy = energy_landscape.get(neighbor.type.value, float('inf')) | |
| # Tunnel if found lower energy state | |
| if neighbor_energy < current_energy: | |
| self.tunneling_events.append({ | |
| "from_state": pattern.type.value, | |
| "to_state": neighbor.type.value, | |
| "energy_delta": neighbor_energy - current_energy, | |
| "timestamp": datetime.now().isoformat() | |
| }) | |
| return neighbor | |
| return pattern | |
| def quantum_annealing(self, | |
| initial_pattern: Pattern, | |
| cost_function: callable, | |
| num_steps: int = 1000) -> Pattern: | |
| """Perform quantum annealing optimization.""" | |
| current_pattern = initial_pattern | |
| current_cost = cost_function(current_pattern) | |
| temperature = self.annealing_schedule["initial_temp"] | |
| for step in range(num_steps): | |
| # Generate neighbor pattern | |
| neighbor = self._generate_neighbor_pattern(current_pattern) | |
| neighbor_cost = cost_function(neighbor) | |
| # Calculate acceptance probability | |
| delta_cost = neighbor_cost - current_cost | |
| if delta_cost < 0 or np.random.random() < np.exp(-delta_cost / temperature): | |
| current_pattern = neighbor | |
| current_cost = neighbor_cost | |
| # Update temperature | |
| temperature *= self.annealing_schedule["cooling_rate"] | |
| self.optimization_trace.append(current_cost) | |
| # Stop if temperature is too low | |
| if temperature < self.annealing_schedule["final_temp"]: | |
| break | |
| return current_pattern | |
| def _pattern_to_quantum_state(self, pattern: Pattern) -> np.ndarray: | |
| """Convert pattern to quantum state representation.""" | |
| # Create basis state based on pattern type | |
| basis_state = np.zeros_like(self.state) | |
| state_index = hash(pattern.type.value) % (2**self.num_qubits) | |
| basis_state[state_index] = 1.0 | |
| # Apply amplitude and phase | |
| return pattern.amplitude * np.exp(1j * pattern.phase) * basis_state | |
| def _find_neighboring_states(self, pattern: Pattern) -> List[Pattern]: | |
| """Find neighboring quantum states for tunneling.""" | |
| neighbors = [] | |
| current_type_index = list(PatternType).index(pattern.type) | |
| # Consider adjacent pattern types as neighbors | |
| for i in [-1, 1]: | |
| try: | |
| neighbor_type = list(PatternType)[current_type_index + i] | |
| neighbor = Pattern( | |
| type=neighbor_type, | |
| amplitude=pattern.amplitude, | |
| phase=pattern.phase + np.random.normal(0, 0.1), | |
| entanglement_partners=pattern.entanglement_partners.copy(), | |
| interference_score=pattern.interference_score | |
| ) | |
| neighbors.append(neighbor) | |
| except IndexError: | |
| continue | |
| return neighbors | |
| def _generate_neighbor_pattern(self, pattern: Pattern) -> Pattern: | |
| """Generate neighboring pattern for annealing.""" | |
| return Pattern( | |
| type=pattern.type, | |
| amplitude=pattern.amplitude + np.random.normal(0, 0.1), | |
| phase=pattern.phase + np.random.normal(0, 0.1), | |
| entanglement_partners=pattern.entanglement_partners.copy(), | |
| interference_score=pattern.interference_score, | |
| metadata=pattern.metadata.copy() | |
| ) | |
| def get_optimization_statistics(self) -> Dict[str, Any]: | |
| """Get statistics about the optimization process.""" | |
| return { | |
| "interference_history": self.interference_history, | |
| "tunneling_events": self.tunneling_events, | |
| "optimization_trace": self.optimization_trace, | |
| "entanglement_graph": self.entanglement_graph | |
| } | |
| def reset_system(self): | |
| """Reset the quantum learning system.""" | |
| self.state = np.zeros((2**self.num_qubits,), dtype=complex) | |
| self.state[0] = 1.0 | |
| self.patterns.clear() | |
| self.entanglement_graph.clear() | |
| self.interference_history.clear() | |
| self.tunneling_events.clear() | |
| self.optimization_trace.clear() | |