Spaces:
Runtime error
Runtime error
| """Advanced portfolio optimization for venture strategies.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy | |
| class VentureMetrics: | |
| """Venture performance metrics.""" | |
| revenue: float | |
| profit: float | |
| growth_rate: float | |
| risk_score: float | |
| resource_usage: Dict[str, float] | |
| synergy_score: float | |
| class ResourceAllocation: | |
| """Resource allocation configuration.""" | |
| venture_id: str | |
| resources: Dict[str, float] | |
| constraints: List[str] | |
| dependencies: List[str] | |
| priority: float | |
| class PortfolioOptimizer: | |
| """ | |
| Advanced portfolio optimization that: | |
| 1. Optimizes venture mix | |
| 2. Allocates resources | |
| 3. Manages risks | |
| 4. Maximizes synergies | |
| 5. Balances growth | |
| """ | |
| def __init__(self): | |
| self.ventures: Dict[str, VentureMetrics] = {} | |
| self.allocations: Dict[str, ResourceAllocation] = {} | |
| async def optimize_portfolio(self, | |
| ventures: List[str], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Optimize venture portfolio.""" | |
| try: | |
| # Analyze ventures | |
| analysis = await self._analyze_ventures(ventures, context) | |
| # Optimize allocation | |
| allocation = await self._optimize_allocation(analysis, context) | |
| # Risk optimization | |
| risk = await self._optimize_risk(allocation, context) | |
| # Synergy optimization | |
| synergy = await self._optimize_synergies(risk, context) | |
| # Performance projections | |
| projections = await self._project_performance(synergy, context) | |
| return { | |
| "success": projections["annual_profit"] >= 1_000_000, | |
| "analysis": analysis, | |
| "allocation": allocation, | |
| "risk": risk, | |
| "synergy": synergy, | |
| "projections": projections | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in portfolio optimization: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| async def _analyze_ventures(self, | |
| ventures: List[str], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Analyze venture characteristics.""" | |
| prompt = f""" | |
| Analyze ventures: | |
| Ventures: {json.dumps(ventures)} | |
| Context: {json.dumps(context)} | |
| Analyze: | |
| 1. Performance metrics | |
| 2. Resource requirements | |
| 3. Risk factors | |
| 4. Growth potential | |
| 5. Synergy opportunities | |
| Format as: | |
| [Venture1] | |
| Metrics: ... | |
| Resources: ... | |
| Risks: ... | |
| Growth: ... | |
| Synergies: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_venture_analysis(response["answer"]) | |
| async def _optimize_allocation(self, | |
| analysis: Dict[str, Any], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Optimize resource allocation.""" | |
| prompt = f""" | |
| Optimize resource allocation: | |
| Analysis: {json.dumps(analysis)} | |
| Context: {json.dumps(context)} | |
| Optimize for: | |
| 1. Resource efficiency | |
| 2. Growth potential | |
| 3. Risk balance | |
| 4. Synergy capture | |
| 5. Constraint satisfaction | |
| Format as: | |
| [Allocation1] | |
| Venture: ... | |
| Resources: ... | |
| Constraints: ... | |
| Dependencies: ... | |
| Priority: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_allocation_optimization(response["answer"]) | |
| async def _optimize_risk(self, | |
| allocation: Dict[str, Any], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Optimize risk management.""" | |
| prompt = f""" | |
| Optimize risk management: | |
| Allocation: {json.dumps(allocation)} | |
| Context: {json.dumps(context)} | |
| Optimize for: | |
| 1. Risk diversification | |
| 2. Exposure limits | |
| 3. Correlation management | |
| 4. Hedging strategies | |
| 5. Contingency planning | |
| Format as: | |
| [Risk1] | |
| Type: ... | |
| Exposure: ... | |
| Mitigation: ... | |
| Contingency: ... | |
| Impact: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_risk_optimization(response["answer"]) | |
| async def _optimize_synergies(self, | |
| risk: Dict[str, Any], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Optimize portfolio synergies.""" | |
| prompt = f""" | |
| Optimize synergies: | |
| Risk: {json.dumps(risk)} | |
| Context: {json.dumps(context)} | |
| Optimize for: | |
| 1. Resource sharing | |
| 2. Knowledge transfer | |
| 3. Market leverage | |
| 4. Technology reuse | |
| 5. Customer cross-sell | |
| Format as: | |
| [Synergy1] | |
| Type: ... | |
| Ventures: ... | |
| Potential: ... | |
| Requirements: ... | |
| Timeline: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_synergy_optimization(response["answer"]) | |
| async def _project_performance(self, | |
| synergy: Dict[str, Any], | |
| context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Project portfolio performance.""" | |
| prompt = f""" | |
| Project performance: | |
| Synergy: {json.dumps(synergy)} | |
| Context: {json.dumps(context)} | |
| Project: | |
| 1. Revenue growth | |
| 2. Profit margins | |
| 3. Resource utilization | |
| 4. Risk metrics | |
| 5. Synergy capture | |
| Format as: | |
| [Projections] | |
| Revenue: ... | |
| Profit: ... | |
| Resources: ... | |
| Risk: ... | |
| Synergies: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_performance_projections(response["answer"]) | |
| def _calculate_portfolio_metrics(self) -> Dict[str, float]: | |
| """Calculate comprehensive portfolio metrics.""" | |
| if not self.ventures: | |
| return { | |
| "total_revenue": 0.0, | |
| "total_profit": 0.0, | |
| "avg_growth": 0.0, | |
| "avg_risk": 0.0, | |
| "resource_efficiency": 0.0, | |
| "synergy_capture": 0.0 | |
| } | |
| metrics = { | |
| "total_revenue": sum(v.revenue for v in self.ventures.values()), | |
| "total_profit": sum(v.profit for v in self.ventures.values()), | |
| "avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]), | |
| "avg_risk": np.mean([v.risk_score for v in self.ventures.values()]), | |
| "resource_efficiency": self._calculate_resource_efficiency(), | |
| "synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()]) | |
| } | |
| return metrics | |
| def _calculate_resource_efficiency(self) -> float: | |
| """Calculate resource utilization efficiency.""" | |
| if not self.ventures or not self.allocations: | |
| return 0.0 | |
| total_resources = defaultdict(float) | |
| used_resources = defaultdict(float) | |
| # Sum up total and used resources | |
| for venture_id, allocation in self.allocations.items(): | |
| for resource, amount in allocation.resources.items(): | |
| total_resources[resource] += amount | |
| if venture_id in self.ventures: | |
| used_resources[resource] += ( | |
| amount * self.ventures[venture_id].resource_usage.get(resource, 0) | |
| ) | |
| # Calculate efficiency for each resource | |
| efficiencies = [] | |
| for resource in total_resources: | |
| if total_resources[resource] > 0: | |
| efficiency = used_resources[resource] / total_resources[resource] | |
| efficiencies.append(efficiency) | |
| return np.mean(efficiencies) if efficiencies else 0.0 | |
| def get_portfolio_insights(self) -> Dict[str, Any]: | |
| """Get comprehensive portfolio insights.""" | |
| metrics = self._calculate_portfolio_metrics() | |
| return { | |
| "portfolio_metrics": metrics, | |
| "venture_metrics": { | |
| venture_id: { | |
| "revenue": v.revenue, | |
| "profit": v.profit, | |
| "growth_rate": v.growth_rate, | |
| "risk_score": v.risk_score, | |
| "synergy_score": v.synergy_score | |
| } | |
| for venture_id, v in self.ventures.items() | |
| }, | |
| "resource_allocation": { | |
| venture_id: { | |
| "resources": a.resources, | |
| "priority": a.priority, | |
| "constraints": len(a.constraints), | |
| "dependencies": len(a.dependencies) | |
| } | |
| for venture_id, a in self.allocations.items() | |
| }, | |
| "risk_profile": { | |
| "portfolio_risk": metrics["avg_risk"], | |
| "risk_concentration": self._calculate_risk_concentration(), | |
| "risk_correlation": self._calculate_risk_correlation() | |
| }, | |
| "optimization_opportunities": self._identify_optimization_opportunities() | |
| } | |
| def _calculate_risk_concentration(self) -> float: | |
| """Calculate risk concentration in portfolio.""" | |
| if not self.ventures: | |
| return 0.0 | |
| risk_weights = [v.risk_score for v in self.ventures.values()] | |
| return np.std(risk_weights) if len(risk_weights) > 1 else 0.0 | |
| def _calculate_risk_correlation(self) -> float: | |
| """Calculate risk correlation between ventures.""" | |
| if len(self.ventures) < 2: | |
| return 0.0 | |
| # Create correlation matrix of risk scores and resource usage | |
| venture_metrics = [ | |
| [v.risk_score] + list(v.resource_usage.values()) | |
| for v in self.ventures.values() | |
| ] | |
| correlation_matrix = np.corrcoef(venture_metrics) | |
| return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)]) | |
| def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]: | |
| """Identify portfolio optimization opportunities.""" | |
| opportunities = [] | |
| # Resource optimization opportunities | |
| resource_efficiency = self._calculate_resource_efficiency() | |
| if resource_efficiency < 0.8: | |
| opportunities.append({ | |
| "type": "resource_optimization", | |
| "potential": 1.0 - resource_efficiency, | |
| "description": "Improve resource utilization efficiency" | |
| }) | |
| # Risk optimization opportunities | |
| risk_concentration = self._calculate_risk_concentration() | |
| if risk_concentration > 0.2: | |
| opportunities.append({ | |
| "type": "risk_diversification", | |
| "potential": risk_concentration, | |
| "description": "Reduce risk concentration" | |
| }) | |
| # Synergy optimization opportunities | |
| avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0 | |
| if avg_synergy < 0.7: | |
| opportunities.append({ | |
| "type": "synergy_capture", | |
| "potential": 1.0 - avg_synergy, | |
| "description": "Increase synergy capture" | |
| }) | |
| return opportunities | |
| class PortfolioOptimizationStrategy(ReasoningStrategy): | |
| """ | |
| Advanced portfolio optimization strategy that: | |
| 1. Analyzes venture metrics | |
| 2. Optimizes resource allocation | |
| 3. Balances risk-reward | |
| 4. Maximizes portfolio synergies | |
| 5. Provides actionable recommendations | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize portfolio optimization strategy.""" | |
| super().__init__() | |
| self.config = config or {} | |
| self.optimizer = PortfolioOptimizer() | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """ | |
| Generate portfolio optimization strategy based on query and context. | |
| Args: | |
| query: The portfolio optimization query | |
| context: Additional context and parameters | |
| Returns: | |
| Dict containing optimization strategy and confidence scores | |
| """ | |
| try: | |
| # Extract portfolio parameters | |
| params = self._extract_parameters(query, context) | |
| # Optimize portfolio | |
| optimization_result = self.optimizer.optimize_portfolio( | |
| ventures=params.get('ventures', []), | |
| constraints=params.get('constraints', []), | |
| objectives=params.get('objectives', []) | |
| ) | |
| # Get metrics | |
| metrics = self.optimizer.get_portfolio_metrics() | |
| # Generate recommendations | |
| recommendations = self._generate_recommendations( | |
| optimization_result, | |
| metrics | |
| ) | |
| return { | |
| 'answer': self._format_strategy(optimization_result, metrics, recommendations), | |
| 'confidence': self._calculate_confidence(optimization_result), | |
| 'optimization': optimization_result, | |
| 'metrics': metrics, | |
| 'recommendations': recommendations | |
| } | |
| except Exception as e: | |
| logging.error(f"Portfolio optimization failed: {str(e)}") | |
| return { | |
| 'error': f"Portfolio optimization failed: {str(e)}", | |
| 'confidence': 0.0 | |
| } | |
| def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| """Extract optimization parameters from query and context.""" | |
| params = {} | |
| # Extract ventures | |
| if 'ventures' in context: | |
| params['ventures'] = context['ventures'] | |
| else: | |
| # Default empty portfolio | |
| params['ventures'] = [] | |
| # Extract constraints | |
| if 'constraints' in context: | |
| params['constraints'] = context['constraints'] | |
| else: | |
| # Default constraints | |
| params['constraints'] = [ | |
| 'budget_limit', | |
| 'risk_tolerance', | |
| 'resource_capacity' | |
| ] | |
| # Extract objectives | |
| if 'objectives' in context: | |
| params['objectives'] = context['objectives'] | |
| else: | |
| # Default objectives | |
| params['objectives'] = [ | |
| 'maximize_returns', | |
| 'minimize_risk', | |
| 'maximize_synergies' | |
| ] | |
| return params | |
| def _generate_recommendations( | |
| self, | |
| optimization_result: Dict[str, Any], | |
| metrics: Dict[str, Any] | |
| ) -> List[str]: | |
| """Generate actionable recommendations.""" | |
| recommendations = [] | |
| # Portfolio composition recommendations | |
| if 'allocation' in optimization_result: | |
| allocation = optimization_result['allocation'] | |
| recommendations.extend([ | |
| f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}" | |
| for alloc in allocation | |
| ]) | |
| # Risk management recommendations | |
| if 'risk_analysis' in metrics: | |
| risk = metrics['risk_analysis'] | |
| if risk.get('total_risk', 0) > 0.7: | |
| recommendations.append( | |
| "Consider reducing exposure to high-risk ventures" | |
| ) | |
| if risk.get('correlation', 0) > 0.8: | |
| recommendations.append( | |
| "Increase portfolio diversification to reduce correlation" | |
| ) | |
| # Performance optimization recommendations | |
| if 'performance' in metrics: | |
| perf = metrics['performance'] | |
| if perf.get('sharpe_ratio', 0) < 1.0: | |
| recommendations.append( | |
| "Optimize risk-adjusted returns through better venture selection" | |
| ) | |
| if perf.get('efficiency', 0) < 0.8: | |
| recommendations.append( | |
| "Improve resource allocation efficiency across ventures" | |
| ) | |
| return recommendations | |
| def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float: | |
| """Calculate confidence score based on optimization quality.""" | |
| # Base confidence | |
| confidence = 0.5 | |
| # Adjust based on optimization completeness | |
| if optimization_result.get('allocation'): | |
| confidence += 0.1 | |
| if optimization_result.get('risk_analysis'): | |
| confidence += 0.1 | |
| if optimization_result.get('performance_metrics'): | |
| confidence += 0.1 | |
| # Adjust based on solution quality | |
| if optimization_result.get('convergence_status') == 'optimal': | |
| confidence += 0.2 | |
| elif optimization_result.get('convergence_status') == 'suboptimal': | |
| confidence += 0.1 | |
| return min(confidence, 1.0) | |
| def _format_strategy( | |
| self, | |
| optimization_result: Dict[str, Any], | |
| metrics: Dict[str, Any], | |
| recommendations: List[str] | |
| ) -> str: | |
| """Format optimization strategy into readable text.""" | |
| sections = [] | |
| # Portfolio allocation | |
| if 'allocation' in optimization_result: | |
| allocation = optimization_result['allocation'] | |
| sections.append("Portfolio Allocation:") | |
| for alloc in allocation: | |
| sections.append( | |
| f"- {alloc['venture']}: {alloc['percentage']:.1f}%" | |
| ) | |
| # Key metrics | |
| if metrics: | |
| sections.append("\nKey Metrics:") | |
| for key, value in metrics.items(): | |
| if isinstance(value, (int, float)): | |
| sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}") | |
| else: | |
| sections.append(f"- {key.replace('_', ' ').title()}: {value}") | |
| # Recommendations | |
| if recommendations: | |
| sections.append("\nKey Recommendations:") | |
| for rec in recommendations: | |
| sections.append(f"- {rec}") | |
| return "\n".join(sections) | |