Spaces:
Runtime error
Runtime error
| """ | |
| Multi-Modal Reasoning Implementation | |
| ---------------------------------- | |
| Implements reasoning across different types of information. | |
| """ | |
| import logging | |
| from typing import Dict, Any, List, Optional | |
| from datetime import datetime | |
| import json | |
| import numpy as np | |
| from .reasoning import ReasoningStrategy | |
| class MultiModalReasoning(ReasoningStrategy): | |
| """Implements multi-modal reasoning across different types of information.""" | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize multi-modal reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
| self.learning_rate = self.config.get('learning_rate', 0.1) | |
| self.strategy_weights = self.config.get('strategy_weights', { | |
| "LOCAL_LLM": 0.8, | |
| "CHAIN_OF_THOUGHT": 0.6, | |
| "TREE_OF_THOUGHTS": 0.5, | |
| "META_LEARNING": 0.4 | |
| }) | |
| # Multi-modal specific parameters | |
| self.modality_weights = self.config.get('modality_weights', { | |
| 'text': 0.8, | |
| 'image': 0.7, | |
| 'audio': 0.6, | |
| 'video': 0.5, | |
| 'structured': 0.7 | |
| }) | |
| self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6) | |
| self.integration_steps = self.config.get('integration_steps', 3) | |
| self.alignment_method = self.config.get('alignment_method', 'attention') | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| try: | |
| # Process different modalities | |
| modalities = await self._process_modalities(query, context) | |
| # Align across modalities | |
| alignment = await self._cross_modal_alignment(modalities, context) | |
| # Integrated analysis | |
| integration = await self._integrated_analysis(alignment, context) | |
| # Generate final response | |
| response = await self._generate_response(integration, context) | |
| return { | |
| "success": True, | |
| "answer": response["conclusion"], | |
| "modalities": modalities, | |
| "alignment": alignment, | |
| "integration": integration, | |
| "confidence": response["confidence"] | |
| } | |
| except Exception as e: | |
| logging.error(f"Error in multi-modal reasoning: {str(e)}") | |
| return {"success": False, "error": str(e)} | |
| async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]: | |
| """Process query across different modalities.""" | |
| prompt = f""" | |
| Process query across modalities: | |
| Query: {query} | |
| Context: {json.dumps(context)} | |
| For each modality extract: | |
| 1. [Type]: Modality type | |
| 2. [Content]: Relevant content | |
| 3. [Features]: Key features | |
| 4. [Quality]: Content quality | |
| Format as: | |
| [M1] | |
| Type: ... | |
| Content: ... | |
| Features: ... | |
| Quality: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_modalities(response["answer"]) | |
| async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| """Align information across different modalities.""" | |
| try: | |
| # Extract modality types | |
| modal_types = list(modalities.keys()) | |
| # Initialize alignment results | |
| alignments = [] | |
| # Process each modality pair | |
| for i in range(len(modal_types)): | |
| for j in range(i + 1, len(modal_types)): | |
| type1, type2 = modal_types[i], modal_types[j] | |
| # Get items from each modality | |
| items1 = modalities[type1] | |
| items2 = modalities[type2] | |
| # Find alignments between items | |
| for item1 in items1: | |
| for item2 in items2: | |
| similarity = self._calculate_similarity(item1, item2) | |
| if similarity > self.cross_modal_threshold: # Threshold for alignment | |
| alignments.append({ | |
| "type1": type1, | |
| "type2": type2, | |
| "item1": item1, | |
| "item2": item2, | |
| "similarity": similarity | |
| }) | |
| # Sort alignments by similarity | |
| alignments.sort(key=lambda x: x["similarity"], reverse=True) | |
| return alignments | |
| except Exception as e: | |
| logging.error(f"Error in cross-modal alignment: {str(e)}") | |
| return [] | |
| def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float: | |
| """Calculate similarity between two items from different modalities.""" | |
| try: | |
| # Extract content from items | |
| content1 = str(item1.get("content", "")) | |
| content2 = str(item2.get("content", "")) | |
| # Calculate basic similarity (can be enhanced with more sophisticated methods) | |
| common_words = set(content1.lower().split()) & set(content2.lower().split()) | |
| total_words = set(content1.lower().split()) | set(content2.lower().split()) | |
| if not total_words: | |
| return 0.0 | |
| return len(common_words) / len(total_words) | |
| except Exception as e: | |
| logging.error(f"Error calculating similarity: {str(e)}") | |
| return 0.0 | |
| async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
| prompt = f""" | |
| Perform integrated multi-modal analysis: | |
| Alignment: {json.dumps(alignment)} | |
| Context: {json.dumps(context)} | |
| For each insight: | |
| 1. [Insight]: Key finding | |
| 2. [Sources]: Contributing modalities | |
| 3. [Support]: Supporting evidence | |
| 4. [Confidence]: Confidence level | |
| Format as: | |
| [I1] | |
| Insight: ... | |
| Sources: ... | |
| Support: ... | |
| Confidence: ... | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_integration(response["answer"]) | |
| async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]: | |
| prompt = f""" | |
| Generate unified multi-modal response: | |
| Integration: {json.dumps(integration)} | |
| Context: {json.dumps(context)} | |
| Provide: | |
| 1. Main conclusion | |
| 2. Modal contributions | |
| 3. Integration benefits | |
| 4. Confidence level (0-1) | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| return self._parse_response(response["answer"]) | |
| def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]: | |
| """Parse modalities from response.""" | |
| modalities = {} | |
| current_modality = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[M'): | |
| if current_modality: | |
| if current_modality["type"] not in modalities: | |
| modalities[current_modality["type"]] = [] | |
| modalities[current_modality["type"]].append(current_modality) | |
| current_modality = { | |
| "type": "", | |
| "content": "", | |
| "features": "", | |
| "quality": "" | |
| } | |
| elif current_modality: | |
| if line.startswith('Type:'): | |
| current_modality["type"] = line[5:].strip() | |
| elif line.startswith('Content:'): | |
| current_modality["content"] = line[8:].strip() | |
| elif line.startswith('Features:'): | |
| current_modality["features"] = line[9:].strip() | |
| elif line.startswith('Quality:'): | |
| current_modality["quality"] = line[8:].strip() | |
| if current_modality: | |
| if current_modality["type"] not in modalities: | |
| modalities[current_modality["type"]] = [] | |
| modalities[current_modality["type"]].append(current_modality) | |
| return modalities | |
| def _parse_integration(self, response: str) -> List[Dict[str, Any]]: | |
| """Parse integration from response.""" | |
| integration = [] | |
| current_insight = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('[I'): | |
| if current_insight: | |
| integration.append(current_insight) | |
| current_insight = { | |
| "insight": "", | |
| "sources": "", | |
| "support": "", | |
| "confidence": 0.0 | |
| } | |
| elif current_insight: | |
| if line.startswith('Insight:'): | |
| current_insight["insight"] = line[8:].strip() | |
| elif line.startswith('Sources:'): | |
| current_insight["sources"] = line[8:].strip() | |
| elif line.startswith('Support:'): | |
| current_insight["support"] = line[8:].strip() | |
| elif line.startswith('Confidence:'): | |
| try: | |
| current_insight["confidence"] = float(line[11:].strip()) | |
| except: | |
| pass | |
| if current_insight: | |
| integration.append(current_insight) | |
| return integration | |
| def _parse_response(self, response: str) -> Dict[str, Any]: | |
| """Parse response from response.""" | |
| response_dict = { | |
| "conclusion": "", | |
| "modal_contributions": [], | |
| "integration_benefits": [], | |
| "confidence": 0.0 | |
| } | |
| mode = None | |
| for line in response.split('\n'): | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if line.startswith('Conclusion:'): | |
| response_dict["conclusion"] = line[11:].strip() | |
| elif line.startswith('Modal Contributions:'): | |
| mode = "modal" | |
| elif line.startswith('Integration Benefits:'): | |
| mode = "integration" | |
| elif line.startswith('Confidence:'): | |
| try: | |
| response_dict["confidence"] = float(line[11:].strip()) | |
| except: | |
| response_dict["confidence"] = 0.5 | |
| mode = None | |
| elif mode == "modal" and line.startswith('- '): | |
| response_dict["modal_contributions"].append(line[2:].strip()) | |
| elif mode == "integration" and line.startswith('- '): | |
| response_dict["integration_benefits"].append(line[2:].strip()) | |
| return response_dict | |