Spaces:
Runtime error
Runtime error
| """Analogical reasoning strategy implementation.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Tuple, Callable | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy, StrategyResult | |
| class AnalogicalLevel(Enum): | |
| """Levels of analogical similarity.""" | |
| SURFACE = "surface" | |
| STRUCTURAL = "structural" | |
| SEMANTIC = "semantic" | |
| FUNCTIONAL = "functional" | |
| CAUSAL = "causal" | |
| ABSTRACT = "abstract" | |
| class MappingType(Enum): | |
| """Types of analogical mappings.""" | |
| DIRECT = "direct" | |
| TRANSFORMED = "transformed" | |
| COMPOSITE = "composite" | |
| ABSTRACT = "abstract" | |
| METAPHORICAL = "metaphorical" | |
| HYBRID = "hybrid" | |
| class AnalogicalPattern: | |
| """Represents a pattern for analogical matching.""" | |
| id: str | |
| level: AnalogicalLevel | |
| features: Dict[str, Any] | |
| relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) | |
| constraints: List[str] | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class AnalogicalMapping: | |
| """Represents a mapping between source and target domains.""" | |
| id: str | |
| type: MappingType | |
| source_elements: Dict[str, Any] | |
| target_elements: Dict[str, Any] | |
| correspondences: List[Tuple[str, str, float]] # (source, target, strength) | |
| transformations: List[Dict[str, Any]] | |
| confidence: float | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class AnalogicalSolution: | |
| """Represents a solution derived through analogical reasoning.""" | |
| id: str | |
| source_analogy: str | |
| mapping: AnalogicalMapping | |
| adaptation: Dict[str, Any] | |
| inference: Dict[str, Any] | |
| confidence: float | |
| validation: Dict[str, Any] | |
| metadata: Dict[str, Any] = field(default_factory=dict) | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class AnalogicalStrategy(ReasoningStrategy): | |
| """Advanced analogical reasoning that: | |
| 1. Identifies relevant analogies | |
| 2. Maps relationships | |
| 3. Transfers knowledge | |
| 4. Validates mappings | |
| 5. Refines analogies | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize analogical reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| self.min_similarity = self.config.get('min_similarity', 0.6) | |
| self.max_candidates = self.config.get('max_candidates', 5) | |
| self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) | |
| # Knowledge base | |
| self.patterns: Dict[str, AnalogicalPattern] = {} | |
| self.mappings: Dict[str, AnalogicalMapping] = {} | |
| self.solutions: Dict[str, AnalogicalSolution] = {} | |
| # Performance metrics | |
| self.performance_metrics = { | |
| 'pattern_matches': 0, | |
| 'successful_mappings': 0, | |
| 'failed_mappings': 0, | |
| 'adaptation_success_rate': 0.0, | |
| 'avg_solution_confidence': 0.0, | |
| 'pattern_distribution': defaultdict(int), | |
| 'mapping_distribution': defaultdict(int), | |
| 'total_patterns_used': 0, | |
| 'total_mappings_created': 0, | |
| 'total_solutions_generated': 0 | |
| } | |
| async def reason( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> StrategyResult: | |
| """ | |
| Apply analogical reasoning to analyze the query. | |
| Args: | |
| query: The query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| StrategyResult containing the reasoning output and metadata | |
| """ | |
| try: | |
| # Extract patterns | |
| patterns = await self._extract_patterns(query, context) | |
| self.performance_metrics['total_patterns_used'] = len(patterns) | |
| # Find matches | |
| matches = await self._find_matches(patterns, context) | |
| self.performance_metrics['pattern_matches'] = len(matches) | |
| # Create mappings | |
| mappings = await self._create_mappings(matches, context) | |
| self.performance_metrics['total_mappings_created'] = len(mappings) | |
| # Generate solutions | |
| solutions = await self._generate_solutions(mappings, context) | |
| self.performance_metrics['total_solutions_generated'] = len(solutions) | |
| # Select best solution | |
| best_solution = await self._select_best_solution(solutions, context) | |
| if best_solution: | |
| # Update knowledge base | |
| self._update_knowledge(patterns, mappings, best_solution) | |
| # Update metrics | |
| self._update_metrics(patterns, mappings, solutions, best_solution) | |
| # Build reasoning trace | |
| reasoning_trace = self._build_reasoning_trace( | |
| patterns, matches, mappings, solutions, best_solution | |
| ) | |
| return StrategyResult( | |
| strategy_type="analogical", | |
| success=True, | |
| answer=best_solution.inference.get('conclusion'), | |
| confidence=best_solution.confidence, | |
| reasoning_trace=reasoning_trace, | |
| metadata={ | |
| 'source_analogy': best_solution.source_analogy, | |
| 'mapping_type': best_solution.mapping.type.value, | |
| 'adaptation_details': best_solution.adaptation, | |
| 'validation_results': best_solution.validation | |
| }, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| return StrategyResult( | |
| strategy_type="analogical", | |
| success=False, | |
| answer=None, | |
| confidence=0.0, | |
| reasoning_trace=[{ | |
| 'step': 'error', | |
| 'error': 'No valid solution found', | |
| 'timestamp': datetime.now().isoformat() | |
| }], | |
| metadata={'error': 'No valid solution found'}, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| except Exception as e: | |
| logging.error(f"Analogical reasoning error: {str(e)}") | |
| return StrategyResult( | |
| strategy_type="analogical", | |
| success=False, | |
| answer=None, | |
| confidence=0.0, | |
| reasoning_trace=[{ | |
| 'step': 'error', | |
| 'error': str(e), | |
| 'timestamp': datetime.now().isoformat() | |
| }], | |
| metadata={'error': str(e)}, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| async def _extract_patterns( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[AnalogicalPattern]: | |
| """Extract patterns from query for analogical matching.""" | |
| # This is a placeholder implementation | |
| # In practice, this would use more sophisticated pattern extraction | |
| pattern = AnalogicalPattern( | |
| id=f"pattern_{len(self.patterns)}", | |
| level=AnalogicalLevel.SURFACE, | |
| features={'query': query}, | |
| relations=[], | |
| constraints=[], | |
| metadata={'context': context} | |
| ) | |
| return [pattern] | |
| async def _find_matches( | |
| self, | |
| patterns: List[AnalogicalPattern], | |
| context: Dict[str, Any] | |
| ) -> List[Dict[str, Any]]: | |
| """Find matching patterns in knowledge base.""" | |
| matches = [] | |
| for pattern in patterns: | |
| # Example matching logic | |
| similarity = np.random.random() # Placeholder | |
| if similarity >= self.min_similarity: | |
| matches.append({ | |
| 'pattern': pattern, | |
| 'similarity': similarity, | |
| 'features': pattern.features | |
| }) | |
| return sorted( | |
| matches, | |
| key=lambda x: x['similarity'], | |
| reverse=True | |
| )[:self.max_candidates] | |
| async def _create_mappings( | |
| self, | |
| matches: List[Dict[str, Any]], | |
| context: Dict[str, Any] | |
| ) -> List[AnalogicalMapping]: | |
| """Create mappings between source and target domains.""" | |
| mappings = [] | |
| for match in matches: | |
| mapping = AnalogicalMapping( | |
| id=f"mapping_{len(self.mappings)}", | |
| type=MappingType.DIRECT, | |
| source_elements=match['features'], | |
| target_elements=context, | |
| correspondences=[], | |
| transformations=[], | |
| confidence=match['similarity'] | |
| ) | |
| mappings.append(mapping) | |
| return mappings | |
| async def _generate_solutions( | |
| self, | |
| mappings: List[AnalogicalMapping], | |
| context: Dict[str, Any] | |
| ) -> List[AnalogicalSolution]: | |
| """Generate solutions through analogical transfer.""" | |
| solutions = [] | |
| for mapping in mappings: | |
| if mapping.confidence >= self.adaptation_threshold: | |
| solution = AnalogicalSolution( | |
| id=f"solution_{len(self.solutions)}", | |
| source_analogy=str(mapping.source_elements), | |
| mapping=mapping, | |
| adaptation={'applied_rules': []}, | |
| inference={'conclusion': 'Analogical solution'}, | |
| confidence=mapping.confidence, | |
| validation={'checks_passed': True}, | |
| metadata={'context': context} | |
| ) | |
| solutions.append(solution) | |
| return solutions | |
| async def _select_best_solution( | |
| self, | |
| solutions: List[AnalogicalSolution], | |
| context: Dict[str, Any] | |
| ) -> Optional[AnalogicalSolution]: | |
| """Select the best solution based on multiple criteria.""" | |
| if not solutions: | |
| return None | |
| # Sort by confidence and return best | |
| return max(solutions, key=lambda x: x.confidence) | |
| def _update_knowledge( | |
| self, | |
| patterns: List[AnalogicalPattern], | |
| mappings: List[AnalogicalMapping], | |
| solution: AnalogicalSolution | |
| ) -> None: | |
| """Update knowledge base with new patterns and successful mappings.""" | |
| # Store new patterns | |
| for pattern in patterns: | |
| self.patterns[pattern.id] = pattern | |
| # Store successful mappings | |
| for mapping in mappings: | |
| if mapping.confidence >= self.min_confidence: | |
| self.mappings[mapping.id] = mapping | |
| # Store successful solution | |
| self.solutions[solution.id] = solution | |
| def _update_metrics( | |
| self, | |
| patterns: List[AnalogicalPattern], | |
| mappings: List[AnalogicalMapping], | |
| solutions: List[AnalogicalSolution], | |
| best_solution: AnalogicalSolution | |
| ) -> None: | |
| """Update performance metrics.""" | |
| # Update pattern distribution | |
| for pattern in patterns: | |
| self.performance_metrics['pattern_distribution'][pattern.level] += 1 | |
| # Update mapping distribution | |
| for mapping in mappings: | |
| self.performance_metrics['mapping_distribution'][mapping.type] += 1 | |
| if mapping.confidence >= self.min_confidence: | |
| self.performance_metrics['successful_mappings'] += 1 | |
| else: | |
| self.performance_metrics['failed_mappings'] += 1 | |
| # Calculate adaptation success rate | |
| total_adaptations = len(solutions) | |
| successful_adaptations = sum( | |
| 1 for s in solutions | |
| if s.confidence >= self.adaptation_threshold | |
| ) | |
| self.performance_metrics['adaptation_success_rate'] = ( | |
| successful_adaptations / total_adaptations | |
| if total_adaptations > 0 else 0.0 | |
| ) | |
| # Calculate average solution confidence | |
| self.performance_metrics['avg_solution_confidence'] = ( | |
| sum(s.confidence for s in solutions) / len(solutions) | |
| if solutions else 0.0 | |
| ) | |
| def _build_reasoning_trace( | |
| self, | |
| patterns: List[AnalogicalPattern], | |
| matches: List[Dict[str, Any]], | |
| mappings: List[AnalogicalMapping], | |
| solutions: List[AnalogicalSolution], | |
| best_solution: AnalogicalSolution | |
| ) -> List[Dict[str, Any]]: | |
| """Build the reasoning trace for the solution.""" | |
| trace = [] | |
| # Pattern extraction step | |
| trace.append({ | |
| 'step': 'pattern_extraction', | |
| 'patterns': [self._pattern_to_dict(p) for p in patterns], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Pattern matching step | |
| trace.append({ | |
| 'step': 'pattern_matching', | |
| 'matches': matches, | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Mapping creation step | |
| trace.append({ | |
| 'step': 'mapping_creation', | |
| 'mappings': [self._mapping_to_dict(m) for m in mappings], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Solution generation step | |
| trace.append({ | |
| 'step': 'solution_generation', | |
| 'solutions': [self._solution_to_dict(s) for s in solutions], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Best solution selection step | |
| trace.append({ | |
| 'step': 'solution_selection', | |
| 'selected_solution': self._solution_to_dict(best_solution), | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| return trace | |
| def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: | |
| """Convert pattern to dictionary for serialization.""" | |
| return { | |
| 'id': pattern.id, | |
| 'level': pattern.level.value, | |
| 'features': pattern.features, | |
| 'relations': pattern.relations, | |
| 'constraints': pattern.constraints, | |
| 'metadata': pattern.metadata, | |
| 'timestamp': pattern.timestamp | |
| } | |
| def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: | |
| """Convert mapping to dictionary for serialization.""" | |
| return { | |
| 'id': mapping.id, | |
| 'type': mapping.type.value, | |
| 'source_elements': mapping.source_elements, | |
| 'target_elements': mapping.target_elements, | |
| 'correspondences': mapping.correspondences, | |
| 'transformations': mapping.transformations, | |
| 'confidence': mapping.confidence, | |
| 'timestamp': mapping.timestamp | |
| } | |
| def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: | |
| """Convert solution to dictionary for serialization.""" | |
| return { | |
| 'id': solution.id, | |
| 'source_analogy': solution.source_analogy, | |
| 'mapping': self._mapping_to_dict(solution.mapping), | |
| 'adaptation': solution.adaptation, | |
| 'inference': solution.inference, | |
| 'confidence': solution.confidence, | |
| 'validation': solution.validation, | |
| 'metadata': solution.metadata, | |
| 'timestamp': solution.timestamp | |
| } | |
| def clear_knowledge_base(self) -> None: | |
| """Clear the knowledge base.""" | |
| self.patterns.clear() | |
| self.mappings.clear() | |
| self.solutions.clear() | |
| # Reset performance metrics | |
| self.performance_metrics.update({ | |
| 'pattern_matches': 0, | |
| 'successful_mappings': 0, | |
| 'failed_mappings': 0, | |
| 'adaptation_success_rate': 0.0, | |
| 'avg_solution_confidence': 0.0, | |
| 'pattern_distribution': defaultdict(int), | |
| 'mapping_distribution': defaultdict(int), | |
| 'total_patterns_used': 0, | |
| 'total_mappings_created': 0, | |
| 'total_solutions_generated': 0 | |
| }) | |