Spaces:
Runtime error
Runtime error
| """Advanced Bayesian reasoning for probabilistic analysis.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy, StrategyResult | |
| class BayesianHypothesis: | |
| """Bayesian hypothesis with probabilities.""" | |
| name: str | |
| prior: float | |
| likelihood: float | |
| posterior: float = 0.0 | |
| evidence: List[Dict[str, Any]] = field(default_factory=list) | |
| class BayesianStrategy(ReasoningStrategy): | |
| """Advanced Bayesian reasoning that: | |
| 1. Generates hypotheses | |
| 2. Calculates prior probabilities | |
| 3. Updates with evidence | |
| 4. Computes posteriors | |
| 5. Provides probabilistic analysis | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize Bayesian reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Configure Bayesian parameters | |
| self.prior_weight = self.config.get('prior_weight', 0.3) | |
| self.evidence_threshold = self.config.get('evidence_threshold', 0.1) | |
| self.min_likelihood = self.config.get('min_likelihood', 0.01) | |
| # Initialize hypothesis storage | |
| self.hypotheses: List[BayesianHypothesis] = [] | |
| async def reason( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> StrategyResult: | |
| """ | |
| Apply Bayesian reasoning to analyze probabilities and update beliefs. | |
| Args: | |
| query: The input query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| StrategyResult containing reasoning results and confidence scores | |
| """ | |
| try: | |
| # Generate initial hypotheses | |
| self.hypotheses = await self._generate_hypotheses(query, context) | |
| # Calculate prior probabilities | |
| priors = await self._calculate_priors(self.hypotheses, context) | |
| # Update with evidence | |
| posteriors = await self._update_with_evidence(self.hypotheses, priors, context) | |
| # Generate analysis | |
| analysis = await self._generate_analysis(posteriors, context) | |
| # Format results | |
| answer = self._format_analysis(analysis) | |
| confidence = self._calculate_confidence(posteriors) | |
| return StrategyResult( | |
| strategy_type="bayesian", | |
| success=True, | |
| answer=answer, | |
| confidence=confidence, | |
| reasoning_trace=[{ | |
| "step": "bayesian_analysis", | |
| "hypotheses": [h.__dict__ for h in self.hypotheses], | |
| "priors": priors, | |
| "posteriors": posteriors, | |
| "analysis": analysis, | |
| "timestamp": datetime.now().isoformat() | |
| }], | |
| metadata={ | |
| "num_hypotheses": len(self.hypotheses), | |
| "max_posterior": max(posteriors.values()) if posteriors else 0.0, | |
| "config": self.config | |
| }, | |
| performance_metrics={ | |
| "prior_weight": self.prior_weight, | |
| "evidence_threshold": self.evidence_threshold, | |
| "min_likelihood": self.min_likelihood | |
| } | |
| ) | |
| except Exception as e: | |
| logging.error(f"Bayesian reasoning error: {str(e)}") | |
| return StrategyResult( | |
| strategy_type="bayesian", | |
| success=False, | |
| answer=None, | |
| confidence=0.0, | |
| reasoning_trace=[{ | |
| "step": "error", | |
| "error": str(e), | |
| "timestamp": datetime.now().isoformat() | |
| }], | |
| metadata={"error": str(e)}, | |
| performance_metrics={} | |
| ) | |
| async def _generate_hypotheses( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[BayesianHypothesis]: | |
| """Generate plausible hypotheses.""" | |
| # Extract key terms for hypothesis generation | |
| terms = self._extract_factors(query, set()) | |
| # Generate alternative hypotheses | |
| alternatives = self._generate_alternative_factors(terms) | |
| # Create hypothesis objects | |
| hypotheses = [] | |
| for name, prior in alternatives.items(): | |
| hypotheses.append(BayesianHypothesis( | |
| name=name, | |
| prior=prior, | |
| likelihood=1.0 # Initial likelihood | |
| )) | |
| return hypotheses | |
| async def _calculate_priors( | |
| self, | |
| hypotheses: List[BayesianHypothesis], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, float]: | |
| """Calculate prior probabilities.""" | |
| priors = {} | |
| total_prior = sum(h.prior for h in hypotheses) | |
| if total_prior > 0: | |
| # Normalize priors | |
| for h in hypotheses: | |
| priors[h.name] = h.prior / total_prior | |
| else: | |
| # Equal priors if no information | |
| prior = 1.0 / len(hypotheses) | |
| for h in hypotheses: | |
| priors[h.name] = prior | |
| return priors | |
| async def _update_with_evidence( | |
| self, | |
| hypotheses: List[BayesianHypothesis], | |
| priors: Dict[str, float], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, float]: | |
| """Update probabilities with evidence.""" | |
| posteriors = priors.copy() | |
| # Get evidence from context | |
| evidence = context.get('evidence', []) | |
| for e in evidence: | |
| # Calculate likelihoods | |
| likelihoods = {} | |
| total_likelihood = 0.0 | |
| for h in hypotheses: | |
| likelihood = await self._calculate_likelihood(h, e) | |
| likelihoods[h.name] = max(likelihood, self.min_likelihood) | |
| total_likelihood += likelihood * posteriors[h.name] | |
| # Update posteriors using Bayes' rule | |
| if total_likelihood > 0: | |
| for h in hypotheses: | |
| posteriors[h.name] = ( | |
| likelihoods[h.name] * posteriors[h.name] / total_likelihood | |
| ) | |
| return posteriors | |
| async def _calculate_likelihood( | |
| self, | |
| hypothesis: BayesianHypothesis, | |
| evidence: Dict[str, Any] | |
| ) -> float: | |
| """Calculate likelihood of evidence given hypothesis.""" | |
| # Simple likelihood calculation | |
| # Could be enhanced with more sophisticated methods | |
| base_likelihood = 0.5 | |
| # Adjust based on evidence strength | |
| strength = evidence.get('strength', 0.0) | |
| likelihood = base_likelihood * (1 + strength) | |
| return min(1.0, max(self.min_likelihood, likelihood)) | |
| async def _generate_analysis( | |
| self, | |
| posteriors: Dict[str, float], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Generate probabilistic analysis.""" | |
| analysis = { | |
| 'top_hypothesis': max(posteriors.items(), key=lambda x: x[1]), | |
| 'confidence': self._calculate_confidence(posteriors), | |
| 'distribution': posteriors, | |
| 'summary': [] | |
| } | |
| # Generate summary points | |
| for name, prob in sorted(posteriors.items(), key=lambda x: x[1], reverse=True): | |
| analysis['summary'].append({ | |
| 'hypothesis': name, | |
| 'probability': prob, | |
| 'strength': 'strong' if prob > 0.7 else 'moderate' if prob > 0.3 else 'weak' | |
| }) | |
| return analysis | |
| def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
| """Format analysis into readable text.""" | |
| top_hyp, top_prob = analysis['top_hypothesis'] | |
| text = [ | |
| f"Based on Bayesian analysis:", | |
| f"- Most likely hypothesis: {top_hyp} (probability: {top_prob:.2f})", | |
| "\nProbability distribution:" | |
| ] | |
| for item in analysis['summary']: | |
| text.append( | |
| f"- {item['hypothesis']}: {item['probability']:.2f} " | |
| f"({item['strength']} evidence)" | |
| ) | |
| return "\n".join(text) | |
| def _calculate_confidence(self, posteriors: Dict[str, float]) -> float: | |
| """Calculate overall confidence score.""" | |
| if not posteriors: | |
| return 0.0 | |
| # Get top two probabilities | |
| probs = sorted(posteriors.values(), reverse=True) | |
| top_prob = probs[0] | |
| if len(probs) > 1: | |
| # Consider the gap between top hypotheses | |
| second_prob = probs[1] | |
| margin = top_prob - second_prob | |
| # Confidence increases with both probability and margin | |
| confidence = (top_prob + margin) / 2 | |
| else: | |
| confidence = top_prob | |
| return min(1.0, max(0.0, confidence)) | |
| def _extract_factors(self, text: str, terms: Set[str]) -> Set[str]: | |
| """Extract relevant factors from text.""" | |
| # Simple word-based extraction | |
| # Could be enhanced with NLP techniques | |
| words = text.lower().split() | |
| return set(words).union(terms) | |
| def _generate_alternative_factors(self, terms: Set[str]) -> Dict[str, float]: | |
| """Generate factors for alternative hypothesis.""" | |
| # Simple alternative generation | |
| # Could be enhanced with domain knowledge | |
| alternatives = { | |
| 'primary': 0.6, | |
| 'alternative': 0.3, | |
| 'null': 0.1 | |
| } | |
| return alternatives | |