update
Browse files
app.py
CHANGED
|
@@ -90,8 +90,9 @@ def convert_to_dataframe(analyzed_articles):
|
|
| 90 |
with gr.Blocks() as iface:
|
| 91 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
| 92 |
gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
|
| 93 |
-
gr.Markdown(
|
| 94 |
-
|
|
|
|
| 95 |
gr.Markdown("### π NIM: 21533401 | Kelas: TI 7A")
|
| 96 |
gr.Markdown(
|
| 97 |
"""
|
|
@@ -112,23 +113,72 @@ with gr.Blocks() as iface:
|
|
| 112 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
| 113 |
|
| 114 |
gr.Examples(
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
)
|
| 133 |
|
| 134 |
with gr.Row():
|
|
|
|
| 90 |
with gr.Blocks() as iface:
|
| 91 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
| 92 |
gr.Markdown("Analyze the sentiment of recent articles related to a trading asset.")
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
f"### π¨βπ» Author: [**Nanda Safiq Alfiansyah**](https://ndav.my.id)"
|
| 95 |
+
)
|
| 96 |
gr.Markdown("### π NIM: 21533401 | Kelas: TI 7A")
|
| 97 |
gr.Markdown(
|
| 98 |
"""
|
|
|
|
| 113 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
| 114 |
|
| 115 |
gr.Examples(
|
| 116 |
+
examples=[
|
| 117 |
+
# Cryptocurrencies
|
| 118 |
+
"Bitcoin",
|
| 119 |
+
"Ethereum",
|
| 120 |
+
"Ripple",
|
| 121 |
+
"Litecoin",
|
| 122 |
+
"Binance Coin",
|
| 123 |
+
"Cardano",
|
| 124 |
+
"Polkadot",
|
| 125 |
+
"Solana",
|
| 126 |
+
|
| 127 |
+
# Tech stocks
|
| 128 |
+
"Tesla",
|
| 129 |
+
"Apple",
|
| 130 |
+
"Amazon",
|
| 131 |
+
"Microsoft",
|
| 132 |
+
"Meta",
|
| 133 |
+
"Google",
|
| 134 |
+
"Netflix",
|
| 135 |
+
"NVIDIA",
|
| 136 |
+
|
| 137 |
+
# Commodities
|
| 138 |
+
"Gold",
|
| 139 |
+
"Silver",
|
| 140 |
+
"Platinum",
|
| 141 |
+
"Crude Oil",
|
| 142 |
+
"Natural Gas",
|
| 143 |
+
"Copper",
|
| 144 |
+
|
| 145 |
+
# Indices
|
| 146 |
+
"S&P 500",
|
| 147 |
+
"Dow Jones",
|
| 148 |
+
"Nasdaq 100",
|
| 149 |
+
"FTSE 100",
|
| 150 |
+
"DAX 30",
|
| 151 |
+
"Nikkei 225",
|
| 152 |
+
"Hang Seng",
|
| 153 |
+
|
| 154 |
+
# Forex pairs
|
| 155 |
+
"USD/EUR",
|
| 156 |
+
"USD/JPY",
|
| 157 |
+
"GBP/USD",
|
| 158 |
+
"AUD/USD",
|
| 159 |
+
"USD/CAD",
|
| 160 |
+
"USD/CHF",
|
| 161 |
+
|
| 162 |
+
# Global companies
|
| 163 |
+
"Alibaba",
|
| 164 |
+
"Samsung",
|
| 165 |
+
"Toyota",
|
| 166 |
+
"Sony",
|
| 167 |
+
"Roche",
|
| 168 |
+
"Volkswagen",
|
| 169 |
+
"Tencent",
|
| 170 |
+
"HSBC",
|
| 171 |
+
|
| 172 |
+
# Other popular assets
|
| 173 |
+
"Coca-Cola",
|
| 174 |
+
"PepsiCo",
|
| 175 |
+
"McDonald's",
|
| 176 |
+
"Procter & Gamble",
|
| 177 |
+
"Johnson & Johnson",
|
| 178 |
+
"Intel",
|
| 179 |
+
"IBM",
|
| 180 |
+
],
|
| 181 |
+
inputs=input_asset,
|
| 182 |
)
|
| 183 |
|
| 184 |
with gr.Row():
|