Spaces:
Runtime error
Runtime error
napatswift
commited on
Commit
·
b7f49b8
1
Parent(s):
15e4f3a
Init project
Browse files- Dockerfile +31 -0
- main.py +65 -0
- model/table-det/config.py +318 -0
- model/table-det/model.pth +3 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /code
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
| 6 |
+
|
| 7 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 8 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 9 |
+
|
| 10 |
+
RUN pip install -U openmim
|
| 11 |
+
RUN mim install mmengine
|
| 12 |
+
RUN mim install mmcv
|
| 13 |
+
RUN mim install mmdet
|
| 14 |
+
RUN mim install mmocr
|
| 15 |
+
|
| 16 |
+
# Set up a new user named "user" with user ID 1000
|
| 17 |
+
RUN useradd -m -u 1000 user
|
| 18 |
+
# Switch to the "user" user
|
| 19 |
+
USER user
|
| 20 |
+
# Set home to the user's home directory
|
| 21 |
+
ENV HOME=/home/user \
|
| 22 |
+
PATH=/home/user/.local/bin:$PATH
|
| 23 |
+
|
| 24 |
+
# Set the working directory to the user's home directory
|
| 25 |
+
WORKDIR $HOME/app
|
| 26 |
+
|
| 27 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 28 |
+
COPY --chown=user . $HOME/app
|
| 29 |
+
RUN ls
|
| 30 |
+
|
| 31 |
+
CMD ["python", "main.py"]
|
main.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mmdet.apis import init_detector, inference_detector
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2
|
| 4 |
+
import sys
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
print('Loading model...')
|
| 9 |
+
device = 'gpu' if torch.cuda.is_available() else 'cpu'
|
| 10 |
+
|
| 11 |
+
table_det = init_detector('model/table-det/config.py',
|
| 12 |
+
'model/table-det/model.pth', device=device)
|
| 13 |
+
def get_corners(points):
|
| 14 |
+
"""
|
| 15 |
+
Returns the top-left, top-right, bottom-right, and bottom-left corners
|
| 16 |
+
of a rectangle defined by a list of four points in the form of tuples.
|
| 17 |
+
"""
|
| 18 |
+
# Sort points by x-coordinate
|
| 19 |
+
sorted_points = sorted(points, key=lambda p: p[0])
|
| 20 |
+
|
| 21 |
+
# Split sorted points into left and right halves
|
| 22 |
+
left_points = sorted_points[:2]
|
| 23 |
+
right_points = sorted_points[2:]
|
| 24 |
+
|
| 25 |
+
# Sort left and right points by y-coordinate
|
| 26 |
+
left_points = sorted(left_points, key=lambda p: p[1])
|
| 27 |
+
right_points = sorted(right_points, key=lambda p: p[1], reverse=True)
|
| 28 |
+
|
| 29 |
+
# Return corners in order: top-left, top-right, bottom-right, bottom-left
|
| 30 |
+
return (left_points[0], right_points[0], right_points[1], left_points[1])
|
| 31 |
+
|
| 32 |
+
def funct(mask_array):
|
| 33 |
+
table_images = []
|
| 34 |
+
table_bboxes = []
|
| 35 |
+
contours, hierarchy = cv2.findContours(mask_array, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 36 |
+
for cnt in contours:
|
| 37 |
+
rect = cv2.minAreaRect(cnt)
|
| 38 |
+
box = cv2.boxPoints(rect)
|
| 39 |
+
epsilon = cv2.arcLength(cnt,True)
|
| 40 |
+
approx = cv2.approxPolyDP(cnt, 0.02*epsilon, True)
|
| 41 |
+
points = np.squeeze(approx)
|
| 42 |
+
if len(points) != 4:
|
| 43 |
+
points = box
|
| 44 |
+
tl, br, bl, tr = get_corners(points.tolist())
|
| 45 |
+
table_bboxes.append([tl, tr, br, bl])
|
| 46 |
+
return table_bboxes
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def predict(image_input):
|
| 50 |
+
results = inference_detector(table_det, image_input)
|
| 51 |
+
print(results)
|
| 52 |
+
return {'message': 'success'}
|
| 53 |
+
|
| 54 |
+
def run():
|
| 55 |
+
demo = gr.Interface(
|
| 56 |
+
fn=predict,
|
| 57 |
+
inputs=gr.components.Image(),
|
| 58 |
+
outputs=gr.JSON(),
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
run()
|
model/table-det/config.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model = dict(
|
| 2 |
+
type='MaskRCNN',
|
| 3 |
+
data_preprocessor=dict(
|
| 4 |
+
type='DetDataPreprocessor',
|
| 5 |
+
mean=[123.675, 116.28, 103.53],
|
| 6 |
+
std=[58.395, 57.12, 57.375],
|
| 7 |
+
bgr_to_rgb=True,
|
| 8 |
+
pad_mask=True,
|
| 9 |
+
pad_size_divisor=32),
|
| 10 |
+
backbone=dict(
|
| 11 |
+
type='ResNet',
|
| 12 |
+
depth=50,
|
| 13 |
+
num_stages=4,
|
| 14 |
+
out_indices=(0, 1, 2, 3),
|
| 15 |
+
frozen_stages=1,
|
| 16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
| 17 |
+
norm_eval=True,
|
| 18 |
+
style='pytorch',
|
| 19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
| 20 |
+
neck=dict(
|
| 21 |
+
type='FPN',
|
| 22 |
+
in_channels=[256, 512, 1024, 2048],
|
| 23 |
+
out_channels=256,
|
| 24 |
+
num_outs=5),
|
| 25 |
+
rpn_head=dict(
|
| 26 |
+
type='RPNHead',
|
| 27 |
+
in_channels=256,
|
| 28 |
+
feat_channels=256,
|
| 29 |
+
anchor_generator=dict(
|
| 30 |
+
type='AnchorGenerator',
|
| 31 |
+
scales=[8],
|
| 32 |
+
ratios=[0.5, 1.0, 2.0],
|
| 33 |
+
strides=[4, 8, 16, 32, 64]),
|
| 34 |
+
bbox_coder=dict(
|
| 35 |
+
type='DeltaXYWHBBoxCoder',
|
| 36 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
| 37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
| 38 |
+
loss_cls=dict(
|
| 39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
| 40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
| 41 |
+
roi_head=dict(
|
| 42 |
+
type='StandardRoIHead',
|
| 43 |
+
bbox_roi_extractor=dict(
|
| 44 |
+
type='SingleRoIExtractor',
|
| 45 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
| 46 |
+
out_channels=256,
|
| 47 |
+
featmap_strides=[4, 8, 16, 32]),
|
| 48 |
+
bbox_head=dict(
|
| 49 |
+
type='Shared2FCBBoxHead',
|
| 50 |
+
in_channels=256,
|
| 51 |
+
fc_out_channels=1024,
|
| 52 |
+
roi_feat_size=7,
|
| 53 |
+
num_classes=1,
|
| 54 |
+
bbox_coder=dict(
|
| 55 |
+
type='DeltaXYWHBBoxCoder',
|
| 56 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
| 57 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
| 58 |
+
reg_class_agnostic=False,
|
| 59 |
+
loss_cls=dict(
|
| 60 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
| 61 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
| 62 |
+
mask_roi_extractor=dict(
|
| 63 |
+
type='SingleRoIExtractor',
|
| 64 |
+
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
|
| 65 |
+
out_channels=256,
|
| 66 |
+
featmap_strides=[4, 8, 16, 32]),
|
| 67 |
+
mask_head=dict(
|
| 68 |
+
type='FCNMaskHead',
|
| 69 |
+
num_convs=4,
|
| 70 |
+
in_channels=256,
|
| 71 |
+
conv_out_channels=256,
|
| 72 |
+
num_classes=1,
|
| 73 |
+
loss_mask=dict(
|
| 74 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
|
| 75 |
+
train_cfg=dict(
|
| 76 |
+
rpn=dict(
|
| 77 |
+
assigner=dict(
|
| 78 |
+
type='MaxIoUAssigner',
|
| 79 |
+
pos_iou_thr=0.7,
|
| 80 |
+
neg_iou_thr=0.3,
|
| 81 |
+
min_pos_iou=0.3,
|
| 82 |
+
match_low_quality=True,
|
| 83 |
+
ignore_iof_thr=-1),
|
| 84 |
+
sampler=dict(
|
| 85 |
+
type='RandomSampler',
|
| 86 |
+
num=256,
|
| 87 |
+
pos_fraction=0.5,
|
| 88 |
+
neg_pos_ub=-1,
|
| 89 |
+
add_gt_as_proposals=False),
|
| 90 |
+
allowed_border=-1,
|
| 91 |
+
pos_weight=-1,
|
| 92 |
+
debug=False),
|
| 93 |
+
rpn_proposal=dict(
|
| 94 |
+
nms_pre=2000,
|
| 95 |
+
max_per_img=1000,
|
| 96 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 97 |
+
min_bbox_size=0),
|
| 98 |
+
rcnn=dict(
|
| 99 |
+
assigner=dict(
|
| 100 |
+
type='MaxIoUAssigner',
|
| 101 |
+
pos_iou_thr=0.5,
|
| 102 |
+
neg_iou_thr=0.5,
|
| 103 |
+
min_pos_iou=0.5,
|
| 104 |
+
match_low_quality=True,
|
| 105 |
+
ignore_iof_thr=-1),
|
| 106 |
+
sampler=dict(
|
| 107 |
+
type='RandomSampler',
|
| 108 |
+
num=512,
|
| 109 |
+
pos_fraction=0.25,
|
| 110 |
+
neg_pos_ub=-1,
|
| 111 |
+
add_gt_as_proposals=True),
|
| 112 |
+
mask_size=28,
|
| 113 |
+
pos_weight=-1,
|
| 114 |
+
debug=False)),
|
| 115 |
+
test_cfg=dict(
|
| 116 |
+
rpn=dict(
|
| 117 |
+
nms_pre=1000,
|
| 118 |
+
max_per_img=1000,
|
| 119 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 120 |
+
min_bbox_size=0),
|
| 121 |
+
rcnn=dict(
|
| 122 |
+
score_thr=0.05,
|
| 123 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
| 124 |
+
max_per_img=100,
|
| 125 |
+
mask_thr_binary=0.5)))
|
| 126 |
+
backend_args = None
|
| 127 |
+
train_pipeline = [
|
| 128 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 129 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 130 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 131 |
+
dict(type='Rotate', level=10),
|
| 132 |
+
dict(type='RandomFlip', prob=0.5),
|
| 133 |
+
dict(type='PackDetInputs')
|
| 134 |
+
]
|
| 135 |
+
test_pipeline = [
|
| 136 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 137 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 138 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 139 |
+
dict(
|
| 140 |
+
type='PackDetInputs',
|
| 141 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 142 |
+
'scale_factor'))
|
| 143 |
+
]
|
| 144 |
+
data_root = 'data/table-det-elect66/'
|
| 145 |
+
metainfo = dict(classes=('Table', ), palette=[(220, 20, 60)])
|
| 146 |
+
dataset_elect66 = dict(
|
| 147 |
+
type='CocoDataset',
|
| 148 |
+
data_root='data/table-det-elect66/',
|
| 149 |
+
ann_file='result.json',
|
| 150 |
+
data_prefix=dict(img=''),
|
| 151 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
| 152 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 153 |
+
pipeline=[
|
| 154 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 155 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 156 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 157 |
+
dict(type='Rotate', level=10),
|
| 158 |
+
dict(type='RandomFlip', prob=0.5),
|
| 159 |
+
dict(type='PackDetInputs')
|
| 160 |
+
])
|
| 161 |
+
dataset_vote62 = dict(
|
| 162 |
+
type='CocoDataset',
|
| 163 |
+
data_root='data/table-det-740/',
|
| 164 |
+
ann_file='train_coco.json',
|
| 165 |
+
data_prefix=dict(img=''),
|
| 166 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
| 167 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 168 |
+
pipeline=[
|
| 169 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 170 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 171 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 172 |
+
dict(type='Rotate', level=10),
|
| 173 |
+
dict(type='RandomFlip', prob=0.5),
|
| 174 |
+
dict(type='PackDetInputs')
|
| 175 |
+
])
|
| 176 |
+
train_dataloader = dict(
|
| 177 |
+
batch_size=2,
|
| 178 |
+
num_workers=2,
|
| 179 |
+
persistent_workers=True,
|
| 180 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
| 181 |
+
batch_sampler=dict(type='AspectRatioBatchSampler'),
|
| 182 |
+
dataset=dict(
|
| 183 |
+
type='ConcatDataset',
|
| 184 |
+
datasets=[
|
| 185 |
+
dict(
|
| 186 |
+
type='CocoDataset',
|
| 187 |
+
data_root='data/table-det-elect66/',
|
| 188 |
+
ann_file='result.json',
|
| 189 |
+
data_prefix=dict(img=''),
|
| 190 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
| 191 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 192 |
+
pipeline=[
|
| 193 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 194 |
+
dict(
|
| 195 |
+
type='LoadAnnotations', with_bbox=True,
|
| 196 |
+
with_mask=True),
|
| 197 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 198 |
+
dict(type='Rotate', level=10),
|
| 199 |
+
dict(type='RandomFlip', prob=0.5),
|
| 200 |
+
dict(type='PackDetInputs')
|
| 201 |
+
]),
|
| 202 |
+
dict(
|
| 203 |
+
type='CocoDataset',
|
| 204 |
+
data_root='data/table-det-740/',
|
| 205 |
+
ann_file='train_coco.json',
|
| 206 |
+
data_prefix=dict(img=''),
|
| 207 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)]),
|
| 208 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
| 209 |
+
pipeline=[
|
| 210 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 211 |
+
dict(
|
| 212 |
+
type='LoadAnnotations', with_bbox=True,
|
| 213 |
+
with_mask=True),
|
| 214 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 215 |
+
dict(type='Rotate', level=10),
|
| 216 |
+
dict(type='RandomFlip', prob=0.5),
|
| 217 |
+
dict(type='PackDetInputs')
|
| 218 |
+
])
|
| 219 |
+
]))
|
| 220 |
+
val_dataloader = dict(
|
| 221 |
+
batch_size=1,
|
| 222 |
+
num_workers=2,
|
| 223 |
+
persistent_workers=True,
|
| 224 |
+
drop_last=False,
|
| 225 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 226 |
+
dataset=dict(
|
| 227 |
+
type='CocoDataset',
|
| 228 |
+
data_root='data/table-det-elect66/',
|
| 229 |
+
ann_file='result.json',
|
| 230 |
+
data_prefix=dict(img=''),
|
| 231 |
+
test_mode=True,
|
| 232 |
+
pipeline=[
|
| 233 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 234 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 235 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 236 |
+
dict(
|
| 237 |
+
type='PackDetInputs',
|
| 238 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 239 |
+
'scale_factor'))
|
| 240 |
+
],
|
| 241 |
+
backend_args=None,
|
| 242 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)])))
|
| 243 |
+
test_dataloader = dict(
|
| 244 |
+
batch_size=1,
|
| 245 |
+
num_workers=2,
|
| 246 |
+
persistent_workers=True,
|
| 247 |
+
drop_last=False,
|
| 248 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
| 249 |
+
dataset=dict(
|
| 250 |
+
type='CocoDataset',
|
| 251 |
+
data_root='data/table-det-elect66/',
|
| 252 |
+
ann_file='result.json',
|
| 253 |
+
data_prefix=dict(img=''),
|
| 254 |
+
test_mode=True,
|
| 255 |
+
pipeline=[
|
| 256 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
| 257 |
+
dict(type='Resize', scale=(1333, 800), keep_ratio=True),
|
| 258 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
| 259 |
+
dict(
|
| 260 |
+
type='PackDetInputs',
|
| 261 |
+
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
|
| 262 |
+
'scale_factor'))
|
| 263 |
+
],
|
| 264 |
+
backend_args=None,
|
| 265 |
+
metainfo=dict(classes=('Table', ), palette=[(220, 20, 60)])))
|
| 266 |
+
val_evaluator = dict(
|
| 267 |
+
type='CocoMetric',
|
| 268 |
+
ann_file='data/table-det-elect66/result.json',
|
| 269 |
+
metric=['bbox', 'segm'],
|
| 270 |
+
format_only=False,
|
| 271 |
+
backend_args=None)
|
| 272 |
+
test_evaluator = dict(
|
| 273 |
+
type='CocoMetric',
|
| 274 |
+
ann_file='data/table-det-elect66/result.json',
|
| 275 |
+
metric=['bbox', 'segm'],
|
| 276 |
+
format_only=False,
|
| 277 |
+
backend_args=None)
|
| 278 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=10, val_interval=5)
|
| 279 |
+
val_cfg = dict(type='ValLoop')
|
| 280 |
+
test_cfg = dict(type='TestLoop')
|
| 281 |
+
param_scheduler = [
|
| 282 |
+
dict(
|
| 283 |
+
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
|
| 284 |
+
dict(
|
| 285 |
+
type='MultiStepLR',
|
| 286 |
+
begin=0,
|
| 287 |
+
end=12,
|
| 288 |
+
by_epoch=True,
|
| 289 |
+
milestones=[8, 11],
|
| 290 |
+
gamma=0.1)
|
| 291 |
+
]
|
| 292 |
+
optim_wrapper = dict(
|
| 293 |
+
type='OptimWrapper',
|
| 294 |
+
optimizer=dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001))
|
| 295 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
| 296 |
+
default_scope = 'mmdet'
|
| 297 |
+
default_hooks = dict(
|
| 298 |
+
timer=dict(type='IterTimerHook'),
|
| 299 |
+
logger=dict(type='LoggerHook', interval=100),
|
| 300 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 301 |
+
checkpoint=dict(type='CheckpointHook', interval=5),
|
| 302 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 303 |
+
visualization=dict(type='DetVisualizationHook'))
|
| 304 |
+
env_cfg = dict(
|
| 305 |
+
cudnn_benchmark=False,
|
| 306 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 307 |
+
dist_cfg=dict(backend='nccl'))
|
| 308 |
+
vis_backends = [dict(type='LocalVisBackend')]
|
| 309 |
+
visualizer = dict(
|
| 310 |
+
type='DetLocalVisualizer',
|
| 311 |
+
vis_backends=[dict(type='LocalVisBackend')],
|
| 312 |
+
name='visualizer')
|
| 313 |
+
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
|
| 314 |
+
log_level = 'INFO'
|
| 315 |
+
load_from = None
|
| 316 |
+
resume = True
|
| 317 |
+
launcher = 'none'
|
| 318 |
+
work_dir = './work_dirs/vote-config'
|
model/table-det/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d42b7f3e8a73cfff6d126cacb5218b0547efba90e5ba89dc158097a0b15b9d33
|
| 3 |
+
size 351999009
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python
|
| 2 |
+
gradio
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|