Spaces:
Running
Running
File size: 6,767 Bytes
aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f b5f99ea aff296f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import gc
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
DEFAULT_MODEL_SMALL = "vandijklab/C2S-Scale-Gemma-2-2B"
DEFAULT_MODEL_LARGE = "vandijklab/C2S-Scale-Gemma-2-27B"
MODEL_CACHE = {"id": None, "tokenizer": None, "model": None}
def vram_gb():
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
return props.total_memory / (1024**3)
return 0.0
def build_prompt(gene_list, species="Homo sapiens"):
if isinstance(gene_list, str):
raw = [g.strip() for g in gene_list.replace("\n", ",").split(",") if g.strip()]
genes = ", ".join(raw)
else:
genes = ", ".join(gene_list)
return (
f"The following is a list of gene names ordered by descending expression level "
f"in a {species} cell. Your task is to give the cell type which this cell belongs "
f"to based on its gene expression.\n"
f"Cell sentence: {genes}.\n"
f"The cell type corresponding to these genes is:"
)
def unload():
MODEL_CACHE["id"] = None
MODEL_CACHE["tokenizer"] = None
MODEL_CACHE["model"] = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def load_model(model_id, quantization):
"""
Carga perezosa del modelo. Para 27B se recomienda A100 80GB.
quantization: 'none' o '8bit' (requiere bitsandbytes si hay GPU).
"""
if MODEL_CACHE["id"] == model_id and MODEL_CACHE["model"] is not None:
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"]
unload()
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
device_map = "auto" if torch.cuda.is_available() else {"": "cpu"}
kwargs = dict(torch_dtype=dtype, device_map=device_map, low_cpu_mem_usage=True)
if quantization == "8bit" and torch.cuda.is_available():
try:
import bitsandbytes as bnb # noqa: F401
kwargs.update(dict(load_in_8bit=True))
except Exception:
# Si no está disponible, caemos a sin cuantizar
pass
tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)
mdl = AutoModelForCausalLM.from_pretrained(model_id, **kwargs).eval()
MODEL_CACHE["id"] = model_id
MODEL_CACHE["tokenizer"] = tok
MODEL_CACHE["model"] = mdl
return tok, mdl
def infer(model_id, species, species_custom, genes_text, prompt_manual,
max_new_tokens, temperature, top_p, top_k, repetition_penalty, quantization):
# especie efectiva
species_eff = species_custom.strip() if (species == "Custom…" and species_custom.strip()) else species
# chequeo sencillo de VRAM con guía para 27B
mem = vram_gb()
warn = ""
if "27B" in model_id:
if mem < 60 and quantization != "8bit":
warn = (
f"⚠️ Detectada VRAM ~{mem:.1f}GB. Para 27B se recomienda A100 80GB "
f"o intentar 8-bit (en T4 puede no ser suficiente)."
)
tok, mdl = load_model(model_id, quantization)
# prompt: usa el manual si está provisto; si no, lo construimos
if prompt_manual and str(prompt_manual).strip():
prompt = str(prompt_manual).strip()
else:
prompt = build_prompt(genes_text, species=species_eff)
inputs = tok(prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to(mdl.device) for k, v in inputs.items()}
streamer = TextIteratorStreamer(tok, skip_special_tokens=True)
gen_kwargs = dict(
**inputs,
max_new_tokens=int(max_new_tokens),
do_sample=True,
temperature=float(temperature),
top_p=float(top_p),
top_k=int(top_k),
repetition_penalty=float(repetition_penalty),
eos_token_id=tok.eos_token_id,
streamer=streamer,
)
# streaming
import threading
output_text = ""
def _gen():
with torch.no_grad():
mdl.generate(**gen_kwargs)
thread = threading.Thread(target=_gen)
thread.start()
for new_text in streamer:
output_text += new_text
yield (warn, output_text)
thread.join()
with gr.Blocks(title="C2S-Scale (Gemma-2) — Single-cell Biology") as demo:
gr.Markdown(
"""
# C2S-Scale (Gemma-2) for single-cell biology
Infiere **tipo celular** a partir de una *cell sentence* (genes ordenados por expresión).
**Modelos**:
- `vandijklab/C2S-Scale-Gemma-2-2B` (ligero; CPU o GPU)
- `vandijklab/C2S-Scale-Gemma-2-27B` (pesado; ideal A100 80GB)
**Nota:** El campo *Prompt efectivo* es editable. Si lo dejas vacío, el app generará uno automáticamente.
"""
)
with gr.Row():
model_id = gr.Dropdown(
choices=[DEFAULT_MODEL_SMALL, DEFAULT_MODEL_LARGE],
value=DEFAULT_MODEL_SMALL,
label="Modelo"
)
quantization = gr.Radio(["none", "8bit"], value="none", label="Cuantización (GPU opcional)")
species = gr.Dropdown(["Homo sapiens", "Mus musculus", "Danio rerio", "Custom…"], value="Homo sapiens", label="Especie")
species_custom = gr.Textbox(value="", label="Especie (si elegiste Custom…)", visible=False)
def _toggle_species(choice):
return gr.update(visible=(choice == "Custom…"))
species.change(_toggle_species, species, species_custom)
example_genes = "MALAT1, RPLP0, RPL13A, ACTB, RPS27A, PTPRC, CD3D, CD3E, CCR7, IL7R, LTB, TRAC, CD27, CD4, CCR6, CXCR5"
genes_text = gr.Textbox(value=example_genes, lines=6, label="Cell sentence (lista de genes ordenados por expresión ↓)")
with gr.Accordion("Parámetros de generación", open=False):
max_new_tokens = gr.Slider(8, 256, value=64, step=1, label="max_new_tokens")
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="top_p")
top_k = gr.Slider(1, 200, value=50, step=1, label="top_k")
repetition_penalty = gr.Slider(0.8, 1.5, value=1.05, step=0.01, label="repetition_penalty")
# PROMPT EFECTIVO (editable por el usuario)
prompt_box = gr.Textbox(label="Prompt efectivo (opcional; déjalo vacío para autogenerar)", lines=8, interactive=True)
warn_box = gr.Markdown("")
output_box = gr.Textbox(label="Salida del modelo (stream)")
run_btn = gr.Button("🚀 Inferir tipo celular")
run_btn.click(
fn=infer,
inputs=[model_id, species, species_custom, genes_text, prompt_box,
max_new_tokens, temperature, top_p, top_k, repetition_penalty, quantization],
outputs=[warn_box, output_box]
)
if __name__ == "__main__":
demo.launch()
|