Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 Authors of "A Watermark for Large Language Models" | |
| # available at https://arxiv.org/abs/2301.10226 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import torch | |
| from transformers import LogitsProcessor | |
| from typing import List, Union | |
| GAMMA = os.getenv("WATERMARK_GAMMA", 0.5) | |
| DELTA = os.getenv("WATERMARK_DELTA", 2.0) | |
| class WatermarkLogitsProcessor(LogitsProcessor): | |
| def __init__( | |
| self, | |
| gamma: float = GAMMA, | |
| delta: float = DELTA, | |
| hash_key: int = 15485863, # just a large prime number to create a rng seed with sufficient bit width | |
| device: str = "cpu", | |
| ): | |
| # watermarking parameters | |
| self.gamma = gamma | |
| self.delta = delta | |
| self.rng = torch.Generator(device=device) | |
| self.hash_key = hash_key | |
| def _seed_rng(self, input_ids: Union[List[int], torch.LongTensor]): | |
| if isinstance(input_ids, list): | |
| assert ( | |
| len(input_ids) >= 1 | |
| ), "requires at least a 1 token prefix sequence to seed rng" | |
| prev_token = input_ids[-1] | |
| else: | |
| assert len(input_ids) == 1 | |
| input_ids = input_ids[0] | |
| assert ( | |
| input_ids.shape[-1] >= 1 | |
| ), "requires at least a 1 token prefix sequence to seed rng" | |
| prev_token = input_ids[-1].item() | |
| self.rng.manual_seed(self.hash_key * prev_token) | |
| def _get_greenlist_ids( | |
| self, | |
| input_ids: Union[List[int], torch.LongTensor], | |
| max_value: int, | |
| device: torch.device, | |
| ) -> List[int]: | |
| # seed the rng using the previous tokens/prefix | |
| self._seed_rng(input_ids) | |
| greenlist_size = int(max_value * self.gamma) | |
| vocab_permutation = torch.randperm(max_value, device=device, generator=self.rng) | |
| greenlist_ids = vocab_permutation[:greenlist_size] | |
| return greenlist_ids | |
| def _calc_greenlist_mask( | |
| scores: torch.FloatTensor, greenlist_token_ids | |
| ) -> torch.BoolTensor: | |
| green_tokens_mask = torch.zeros_like(scores) | |
| green_tokens_mask[-1, greenlist_token_ids] = 1 | |
| final_mask = green_tokens_mask.bool() | |
| return final_mask | |
| def _bias_greenlist_logits( | |
| scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float | |
| ) -> torch.Tensor: | |
| scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias | |
| return scores | |
| def __call__( | |
| self, input_ids: Union[List[int], torch.LongTensor], scores: torch.FloatTensor | |
| ) -> torch.FloatTensor: | |
| greenlist_ids = self._get_greenlist_ids( | |
| input_ids, scores.shape[-1], scores.device | |
| ) | |
| green_tokens_mask = self._calc_greenlist_mask( | |
| scores=scores, greenlist_token_ids=greenlist_ids | |
| ) | |
| scores = self._bias_greenlist_logits( | |
| scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta | |
| ) | |
| return scores | |