Spaces:
Runtime error
Runtime error
| import torch | |
| from dataclasses import dataclass | |
| from opentelemetry import trace | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase | |
| from typing import Optional, Tuple, List, Type, Dict | |
| from text_generation_server.models import Model | |
| from text_generation_server.models.types import ( | |
| GeneratedText, | |
| Batch, | |
| Generation, | |
| PrefillTokens, | |
| ) | |
| from text_generation_server.pb import generate_pb2 | |
| from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling | |
| tracer = trace.get_tracer(__name__) | |
| class Seq2SeqLMBatch(Batch): | |
| batch_id: int | |
| requests: List[generate_pb2.Request] | |
| requests_idx_mapping: Dict[int, int] | |
| # Encoder values | |
| input_ids: Optional[torch.Tensor] | |
| attention_mask: torch.Tensor | |
| # Decoder values | |
| decoder_input_ids: torch.Tensor | |
| decoder_attention_mask: Optional[torch.Tensor] | |
| encoder_last_hidden_state: Optional[torch.Tensor] | |
| # All tokens | |
| all_decoder_input_ids: List[torch.Tensor] | |
| # Seq2SeqLM keeps track of both encoder and decoder attention keys and values | |
| past_key_values: Optional[List[Tuple]] | |
| # Lengths of all generations present in the batch | |
| input_lengths: List[int] | |
| decoder_input_lengths: List[int] | |
| offsets: List[Optional[int]] | |
| token_offsets: List[Optional[int]] | |
| # Generation helpers | |
| next_token_choosers: List[NextTokenChooser] | |
| stopping_criterias: List[StoppingCriteria] | |
| # Metadata used for padding | |
| max_input_length: int | |
| max_decoder_input_length: int | |
| padding_right_offset: int | |
| # Maximum number of tokens this batch will grow to | |
| max_tokens: int | |
| def to_pb(self) -> generate_pb2.Batch: | |
| """Convert a Seq2SeqLMBatch to a text_generation_server.v1.Batch protobuf""" | |
| return generate_pb2.Batch( | |
| id=self.batch_id, | |
| requests=self.requests, | |
| size=len(self), | |
| max_tokens=self.max_tokens, | |
| ) | |
| def from_pb( | |
| cls, | |
| pb: generate_pb2.Batch, | |
| tokenizer: PreTrainedTokenizerBase, | |
| device: torch.device, | |
| ) -> "Seq2SeqLMBatch": | |
| """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch""" | |
| inputs = [] | |
| next_token_choosers = [] | |
| stopping_criterias = [] | |
| decoder_input_lengths = [] | |
| offsets = [] | |
| token_offsets = [] | |
| requests_idx_mapping = {} | |
| # Parse batch | |
| max_truncation = 0 | |
| padding_right_offset = 0 | |
| max_decode_tokens = 0 | |
| for i, r in enumerate(pb.requests): | |
| inputs.append(r.inputs) | |
| requests_idx_mapping[r.id] = i | |
| decoder_input_lengths.append(1) | |
| offsets.append(None) | |
| token_offsets.append(None) | |
| next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) | |
| stopping_criteria = StoppingCriteria.from_pb( | |
| r.stopping_parameters, tokenizer | |
| ) | |
| stopping_criterias.append(stopping_criteria) | |
| max_truncation = max(max_truncation, r.truncate) | |
| max_decode_tokens += stopping_criteria.max_new_tokens | |
| padding_right_offset = max( | |
| padding_right_offset, stopping_criteria.max_new_tokens | |
| ) | |
| # Tokenize batch | |
| tokenized_inputs = tokenizer( | |
| inputs, | |
| return_tensors="pt", | |
| padding=True, | |
| return_token_type_ids=False, | |
| truncation=True, | |
| max_length=max_truncation, | |
| ).to(device) | |
| input_lengths = tokenized_inputs["attention_mask"].sum(1) | |
| max_input_length = input_lengths.max() | |
| # Decoder sequence only contains the bos_token | |
| decoder_input_ids = ( | |
| torch.tensor(tokenizer.bos_token_id, device=device) | |
| .repeat(len(pb.requests)) | |
| .view(-1, 1) | |
| ) | |
| all_decoder_input_ids = decoder_input_ids.view(-1).split(1) | |
| max_tokens = len(inputs) * max_input_length + max_decode_tokens | |
| return cls( | |
| batch_id=pb.id, | |
| requests=pb.requests, | |
| requests_idx_mapping=requests_idx_mapping, | |
| input_ids=tokenized_inputs["input_ids"], | |
| attention_mask=tokenized_inputs["attention_mask"], | |
| decoder_input_ids=decoder_input_ids, | |
| all_decoder_input_ids=list(all_decoder_input_ids), | |
| decoder_attention_mask=None, | |
| encoder_last_hidden_state=None, | |
| past_key_values=None, | |
| input_lengths=input_lengths.tolist(), | |
| decoder_input_lengths=decoder_input_lengths, | |
| offsets=offsets, | |
| token_offsets=token_offsets, | |
| next_token_choosers=next_token_choosers, | |
| stopping_criterias=stopping_criterias, | |
| max_input_length=max_input_length.item(), | |
| max_decoder_input_length=1, | |
| padding_right_offset=padding_right_offset, | |
| max_tokens=max_tokens, | |
| ) | |
| def filter( | |
| self, requests: List[generate_pb2.Request] | |
| ) -> Optional["Seq2SeqLMBatch"]: | |
| if len(requests) == 0: | |
| raise ValueError("Batch must have at least one request") | |
| if len(requests) == len(self): | |
| return self | |
| keep_indices = [] | |
| # New values after filtering | |
| requests_idx_mapping = {} | |
| input_lengths = [] | |
| decoder_input_lengths = [] | |
| offsets = [] | |
| token_offsets = [] | |
| all_decoder_input_ids = [] | |
| next_token_choosers = [] | |
| stopping_criterias = [] | |
| max_input_length = 0 | |
| max_decoder_input_length = 0 | |
| padding_right_offset = 0 | |
| total_remaining_decode_tokens = 0 | |
| for i, r in enumerate(requests): | |
| idx = self.requests_idx_mapping[r.id] | |
| requests_idx_mapping[r.id] = i | |
| keep_indices.append(idx) | |
| offsets.append(self.offsets[idx]) | |
| token_offsets.append(self.token_offsets[idx]) | |
| all_decoder_input_ids.append(self.all_decoder_input_ids[idx]) | |
| request_input_length = self.input_lengths[idx] | |
| input_lengths.append(request_input_length) | |
| max_input_length = max(max_input_length, request_input_length) | |
| request_decoder_input_length = self.decoder_input_lengths[idx] | |
| decoder_input_lengths.append(request_decoder_input_length) | |
| max_decoder_input_length = max( | |
| max_decoder_input_length, request_decoder_input_length | |
| ) | |
| next_token_choosers.append(self.next_token_choosers[idx]) | |
| stopping_criteria = self.stopping_criterias[idx] | |
| stopping_criterias.append(stopping_criteria) | |
| remaining_decode_tokens = ( | |
| stopping_criteria.max_new_tokens - stopping_criteria.current_tokens | |
| ) | |
| total_remaining_decode_tokens += remaining_decode_tokens | |
| padding_right_offset = max(padding_right_offset, remaining_decode_tokens) | |
| # Apply indices to input_ids, attention mask, past key values and other items that need to be cached | |
| self.decoder_input_ids = self.decoder_input_ids[keep_indices] | |
| self.attention_mask = self.attention_mask[keep_indices, -max_input_length:] | |
| if self.decoder_attention_mask is not None: | |
| self.decoder_attention_mask = self.decoder_attention_mask[ | |
| keep_indices, | |
| -(self.padding_right_offset + max_decoder_input_length) : ( | |
| self.decoder_attention_mask.shape[1] - self.padding_right_offset | |
| ) | |
| + padding_right_offset, | |
| ] | |
| self.encoder_last_hidden_state = self.encoder_last_hidden_state[ | |
| keep_indices, -max_input_length: | |
| ] | |
| # Ensure that past_key_values tensors can be updated in-place | |
| if type(self.past_key_values[0]) == tuple: | |
| self.past_key_values = [ | |
| [t for t in layer] for layer in self.past_key_values | |
| ] | |
| decoder_past_seq_len = max_decoder_input_length - 1 | |
| for layer in self.past_key_values: | |
| layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:] | |
| layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:] | |
| layer[2] = layer[2][keep_indices, :, -max_input_length:] | |
| layer[3] = layer[3][keep_indices, :, -max_input_length:] | |
| max_tokens = ( | |
| len(requests) * (max_input_length + max_decoder_input_length) | |
| + remaining_decode_tokens | |
| ) | |
| self.requests = requests | |
| self.requests_idx_mapping = requests_idx_mapping | |
| self.input_ids = None | |
| self.all_decoder_input_ids = all_decoder_input_ids | |
| self.input_lengths = input_lengths | |
| self.decoder_input_lengths = decoder_input_lengths | |
| self.offsets = offsets | |
| self.token_offsets = token_offsets | |
| self.next_token_choosers = next_token_choosers | |
| self.stopping_criterias = stopping_criterias | |
| self.max_input_length = max_input_length | |
| self.max_decoder_input_length = max_decoder_input_length | |
| self.padding_right_offset = padding_right_offset | |
| self.max_tokens = max_tokens | |
| return self | |
| def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch": | |
| """Concatenate multiple batches together by padding internal torch tensors""" | |
| # Used for padding | |
| total_batch_size = 0 | |
| max_input_length = 0 | |
| max_decoder_input_length = 0 | |
| padding_right_offset = 0 | |
| for batch in batches: | |
| total_batch_size += len(batch) | |
| max_input_length = max(max_input_length, batch.max_input_length) | |
| max_decoder_input_length = max( | |
| max_decoder_input_length, batch.max_decoder_input_length | |
| ) | |
| padding_right_offset = max(padding_right_offset, batch.padding_right_offset) | |
| # Batch attributes | |
| requests = [] | |
| requests_idx_mapping = {} | |
| all_decoder_input_ids = [] | |
| input_lengths = [] | |
| decoder_input_lengths = [] | |
| offsets = [] | |
| token_offsets = [] | |
| next_token_choosers = [] | |
| stopping_criterias = [] | |
| max_tokens = 0 | |
| # Batch tensors | |
| attention_mask = None | |
| decoder_input_ids = None | |
| decoder_attention_mask = None | |
| encoder_last_hidden_state = None | |
| past_key_values = [] | |
| # Used for slicing correctly inside the tensors | |
| # Equivalent to a cumsum on batch sizes | |
| start_index = 0 | |
| for i, batch in enumerate(batches): | |
| # Extend all list attributes | |
| requests.extend(batch.requests) | |
| all_decoder_input_ids.extend(batch.all_decoder_input_ids) | |
| input_lengths.extend(batch.input_lengths) | |
| decoder_input_lengths.extend(batch.decoder_input_lengths) | |
| offsets.extend(batch.offsets) | |
| token_offsets.extend(batch.token_offsets) | |
| next_token_choosers.extend(batch.next_token_choosers) | |
| stopping_criterias.extend(batch.stopping_criterias) | |
| if i == 0: | |
| requests_idx_mapping = batch.requests_idx_mapping | |
| else: | |
| # We need to offset the mapping for each batch by the cumulative batch size | |
| for k, v in batch.requests_idx_mapping.items(): | |
| requests_idx_mapping[k] = v + start_index | |
| # Slicing end index for this batch | |
| end_index = start_index + len(batch) | |
| # We only concatenate batches that did at least one step | |
| if batch.encoder_last_hidden_state is None: | |
| raise ValueError("Batch encoder_last_hidden_state cannot be None") | |
| # Create padded tensor | |
| if attention_mask is None: | |
| attention_mask = batch.attention_mask.new_zeros( | |
| (total_batch_size, max_input_length), | |
| ) | |
| # Copy to correct indices | |
| attention_mask[ | |
| start_index:end_index, -batch.max_input_length : | |
| ] = batch.attention_mask[:, -batch.max_input_length :] | |
| # Create padded tensor | |
| if decoder_input_ids is None: | |
| decoder_input_ids = batch.decoder_input_ids.new_zeros( | |
| (total_batch_size, 1), | |
| ) | |
| # Copy to correct indices | |
| decoder_input_ids[start_index:end_index] = batch.decoder_input_ids | |
| # Create padded tensor | |
| if decoder_attention_mask is None: | |
| # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here | |
| decoder_attention_mask = batch.attention_mask.new_zeros( | |
| (total_batch_size, max_decoder_input_length + padding_right_offset), | |
| ) | |
| # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated | |
| # this batch. All generations are of length `batch.max_decoder_input_length`. | |
| left_offset = max_decoder_input_length - batch.max_decoder_input_length | |
| if batch.decoder_attention_mask is None: | |
| decoder_attention_mask[ | |
| start_index:end_index, | |
| left_offset:-padding_right_offset, | |
| ] = 1 | |
| # If it exists, we need to index | |
| else: | |
| batch_left_offset = ( | |
| batch.decoder_attention_mask.shape[1] | |
| - batch.max_decoder_input_length | |
| - batch.padding_right_offset | |
| ) | |
| decoder_attention_mask[ | |
| start_index:end_index, | |
| left_offset:-padding_right_offset, | |
| ] = batch.decoder_attention_mask[ | |
| :, | |
| batch_left_offset : -batch.padding_right_offset, | |
| ] | |
| # Create padded tensor | |
| if encoder_last_hidden_state is None: | |
| encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros( | |
| ( | |
| total_batch_size, | |
| max_input_length, | |
| batch.encoder_last_hidden_state.shape[-1], | |
| ), | |
| ) | |
| # Copy to correct indices | |
| encoder_last_hidden_state[ | |
| start_index:end_index, -batch.max_input_length :, : | |
| ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :] | |
| batch.encoder_last_hidden_state = None | |
| # Ensure that we can update tensors in-place | |
| if type(batch.past_key_values[0]) == tuple: | |
| batch.past_key_values = [ | |
| [t for t in layer] for layer in batch.past_key_values | |
| ] | |
| # Add eventual padding tokens that were added while concatenating | |
| max_tokens += batch.max_tokens + ( | |
| max_input_length | |
| - batch.max_input_length | |
| + max_decoder_input_length | |
| - batch.max_decoder_input_length | |
| ) * len(batch) | |
| start_index = end_index | |
| # Determine shapes for new past kv tensors | |
| first_past_kvs = batches[0].past_key_values | |
| _, num_heads, _, head_dim = first_past_kvs[0][0].shape | |
| padded_dec_t_shape = ( | |
| total_batch_size, | |
| num_heads, | |
| (max_decoder_input_length - 1), | |
| head_dim, | |
| ) | |
| padded_enc_t_shape = ( | |
| total_batch_size, | |
| num_heads, | |
| max_input_length, | |
| head_dim, | |
| ) | |
| # Iterate over attention layers | |
| for j in range(len(first_past_kvs)): | |
| past_key_values.append([]) | |
| # Decoder past | |
| for k in range(0, 2): | |
| # Initialize tensors | |
| padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape) | |
| past_key_values[j].append(padded_past_values) | |
| start_index = 0 | |
| for batch in batches: | |
| t = batch.past_key_values[j][k] | |
| # Clear reference to the original tensor | |
| batch.past_key_values[j][k] = None | |
| # Slicing end index for this batch | |
| end_index = start_index + len(batch) | |
| # We slice the past keys and values to remove the padding from previous batches | |
| past_seq_len = batch.max_decoder_input_length - 1 | |
| padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[ | |
| :, :, -past_seq_len:, : | |
| ] | |
| del t | |
| start_index = end_index | |
| # Encoder past | |
| for k in range(2, 4): | |
| # Initialize tensors | |
| padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape) | |
| past_key_values[j].append(padded_past_values) | |
| start_index = 0 | |
| for batch in batches: | |
| t = batch.past_key_values[j][k] | |
| # Clear reference to the original tensor | |
| batch.past_key_values[j][k] = None | |
| # Slicing end index for this batch | |
| end_index = start_index + len(batch) | |
| # We slice the past keys and values to remove the padding from previous batches | |
| padded_past_values[ | |
| start_index:end_index, :, -batch.max_input_length :, : | |
| ] = t[:, :, -batch.max_input_length :, :] | |
| del t | |
| start_index = end_index | |
| return cls( | |
| batch_id=batches[0].batch_id, | |
| requests=requests, | |
| requests_idx_mapping=requests_idx_mapping, | |
| input_ids=None, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| all_decoder_input_ids=all_decoder_input_ids, | |
| decoder_attention_mask=decoder_attention_mask, | |
| encoder_last_hidden_state=encoder_last_hidden_state, | |
| past_key_values=past_key_values, | |
| input_lengths=input_lengths, | |
| decoder_input_lengths=decoder_input_lengths, | |
| offsets=offsets, | |
| token_offsets=token_offsets, | |
| next_token_choosers=next_token_choosers, | |
| stopping_criterias=stopping_criterias, | |
| max_input_length=max_input_length, | |
| max_decoder_input_length=max_decoder_input_length, | |
| padding_right_offset=padding_right_offset, | |
| max_tokens=max_tokens, | |
| ) | |
| def __len__(self): | |
| return len(self.requests) | |
| class Seq2SeqLM(Model): | |
| def __init__( | |
| self, | |
| model_id: str, | |
| revision: Optional[str] = None, | |
| quantize: bool = False, | |
| decode_buffer: int = 3, | |
| ): | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32 | |
| else: | |
| if quantize: | |
| raise ValueError("quantization is not available on CPU") | |
| device = torch.device("cpu") | |
| dtype = torch.float32 | |
| self.model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_id, | |
| revision=revision, | |
| torch_dtype=dtype, | |
| device_map="auto" if torch.cuda.is_available() else None, | |
| load_in_8bit=quantize, | |
| ).eval() | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_id, revision=revision, padding_side="left", truncation_side="left" | |
| ) | |
| tokenizer.bos_token_id = self.model.config.decoder_start_token_id | |
| super(Seq2SeqLM, self).__init__( | |
| tokenizer=tokenizer, | |
| requires_padding=True, | |
| dtype=dtype, | |
| device=device, | |
| decode_buffer=decode_buffer, | |
| ) | |
| def batch_type(self) -> Type[Seq2SeqLMBatch]: | |
| return Seq2SeqLMBatch | |
| def decode(self, decoder_ids: List[int]) -> str: | |
| return self.tokenizer.decode( | |
| decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| def forward( | |
| self, | |
| input_ids, | |
| attention_mask, | |
| decoder_input_ids, | |
| decoder_attention_mask: Optional, | |
| encoder_last_hidden_state: Optional, | |
| past_key_values: Optional = None, | |
| ) -> Tuple[ | |
| torch.Tensor, | |
| torch.Tensor, | |
| List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], | |
| ]: | |
| # Model Forward | |
| outputs = self.model.forward( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| decoder_input_ids=decoder_input_ids, | |
| decoder_attention_mask=decoder_attention_mask, | |
| encoder_outputs=encoder_last_hidden_state, | |
| past_key_values=past_key_values, | |
| use_cache=True, | |
| ) | |
| return ( | |
| outputs.logits, | |
| outputs.encoder_last_hidden_state, | |
| outputs.past_key_values, | |
| ) | |
| def generate_token( | |
| self, batch: Seq2SeqLMBatch | |
| ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]: | |
| if batch.decoder_attention_mask is not None: | |
| # slice to the correct shape | |
| decoder_attention_mask = batch.decoder_attention_mask[ | |
| :, : -batch.padding_right_offset | |
| ] | |
| else: | |
| decoder_attention_mask = None | |
| # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]` | |
| # internally... | |
| if batch.encoder_last_hidden_state is not None: | |
| encoder_last_hidden_state = [batch.encoder_last_hidden_state] | |
| else: | |
| encoder_last_hidden_state = None | |
| logits, encoder_last_hidden_state, past = self.forward( | |
| batch.input_ids, | |
| batch.attention_mask, | |
| batch.decoder_input_ids, | |
| decoder_attention_mask, | |
| encoder_last_hidden_state, | |
| batch.past_key_values, | |
| ) | |
| # Finished requests | |
| generations: List[Generation] = [] | |
| stopped = True | |
| # Zipped iterator | |
| iterator = zip( | |
| batch.requests, | |
| batch.input_lengths, | |
| batch.offsets, | |
| batch.token_offsets, | |
| batch.decoder_input_lengths, | |
| logits, | |
| batch.next_token_choosers, | |
| batch.stopping_criterias, | |
| batch.all_decoder_input_ids, | |
| ) | |
| # For each member of the batch | |
| for i, ( | |
| request, | |
| input_length, | |
| offset, | |
| token_offset, | |
| decoder_input_length, | |
| logits, | |
| next_token_chooser, | |
| stopping_criteria, | |
| all_decoder_input_ids, | |
| ) in enumerate(iterator): | |
| # Select next token | |
| next_token_id, logprobs = next_token_chooser( | |
| all_decoder_input_ids.view(1, -1), logits | |
| ) | |
| # Append next token to decoder tokens | |
| all_decoder_input_ids = torch.cat( | |
| [all_decoder_input_ids, next_token_id.squeeze(1)] | |
| ) | |
| new_decoder_input_length = decoder_input_length + 1 | |
| # Generated token | |
| next_token_logprob = logprobs[-1, next_token_id] | |
| next_token_id_squeezed = next_token_id.squeeze() | |
| next_token_text, offset, token_offset = self.decode_token( | |
| all_decoder_input_ids, offset, token_offset | |
| ) | |
| # Evaluate stopping criteria | |
| stop, reason = stopping_criteria(next_token_id, next_token_text) | |
| if stop: | |
| # Slice with decoder_input_length to remove padding | |
| # Decode all tokens | |
| output_text = self.decode(all_decoder_input_ids[-decoder_input_length:]) | |
| # Get seed | |
| if isinstance(next_token_chooser.choice, Sampling): | |
| seed = next_token_chooser.choice.seed | |
| else: | |
| seed = None | |
| generated_text = GeneratedText( | |
| output_text, stopping_criteria.current_tokens, reason, seed | |
| ) | |
| else: | |
| # Keep request in the batch | |
| generated_text = None | |
| stopped = False | |
| # Prefill | |
| if stopping_criteria.current_tokens == 1: | |
| prefill_tokens = PrefillTokens( | |
| [self.tokenizer.bos_token_id], | |
| [float("nan")], | |
| [self.tokenizer.bos_token], | |
| ) | |
| else: | |
| prefill_tokens = None | |
| generation = Generation( | |
| request.id, | |
| prefill_tokens, | |
| next_token_id_squeezed, | |
| next_token_logprob, | |
| next_token_text, | |
| next_token_id_squeezed.item() in self.all_special_ids, | |
| generated_text, | |
| ) | |
| generations.append(generation) | |
| # Update values | |
| batch.decoder_input_ids[i] = next_token_id | |
| batch.all_decoder_input_ids[i] = all_decoder_input_ids | |
| batch.input_lengths[i] = input_length | |
| batch.decoder_input_lengths[i] = new_decoder_input_length | |
| batch.offsets[i] = offset | |
| batch.token_offsets[i] = token_offset | |
| batch.max_input_length = max(batch.max_input_length, input_length) | |
| batch.max_decoder_input_length = max( | |
| batch.max_decoder_input_length, new_decoder_input_length | |
| ) | |
| # We finished all generations in the batch; there is no next batch | |
| if stopped: | |
| return generations, None | |
| # We don't need input_ids after the prefill forward | |
| batch.input_ids = None | |
| batch.encoder_last_hidden_state = encoder_last_hidden_state | |
| batch.past_key_values = past | |
| # Update decoder_attention_mask as we added a new token to input_ids | |
| if batch.decoder_attention_mask is not None: | |
| batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1 | |
| batch.padding_right_offset -= 1 | |
| return generations, batch | |