File size: 7,934 Bytes
11b36a2 2d181ba a472bce 11b36a2 2d181ba 11b36a2 af5356d 11b36a2 2d181ba 11b36a2 2d181ba 11b36a2 2d181ba a472bce 11b36a2 2d181ba 11b36a2 a472bce 11b36a2 a472bce 2d181ba a472bce 2d181ba a472bce 2d181ba 11b36a2 a472bce 11b36a2 a472bce 11b36a2 a472bce 2d181ba a472bce 2d181ba 11b36a2 a472bce 2d181ba 11b36a2 a472bce 11b36a2 2d181ba a472bce 11b36a2 a472bce 11b36a2 a472bce 11b36a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
from datasets import load_dataset
from qdrant_client import QdrantClient, models
from sentence_transformers import SentenceTransformer
import torch # Ensure torch is imported
import os
import shutil
import PyPDF2
from docx import Document
import pandas as pd
# --- Configuration ---
QDRANT_PATH = "./qdrant_db"
COLLECTION_NAME = "my_text_collection"
MODEL_NAME = 'KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5' # Better model for semantic similarity
# --- Load Model ---
device = "cpu"
model = SentenceTransformer(MODEL_NAME, device=device)
# --- Qdrant Client and Collection Setup ---
qdrant_client = QdrantClient(path=QDRANT_PATH)
# Check if the collection already exists
collection_exists = False
try:
collection_info = qdrant_client.get_collection(collection_name=COLLECTION_NAME)
print("Collection already exists.")
collection_exists = True
except Exception as e:
print(f"Collection not found: {e}, creating a new one...")
collection_exists = False
# If collection doesn't exist, create it and populate with data
if not collection_exists:
# Load dataset and convert to a simple list format
dataset = load_dataset("ag_news", split="test")
# Convert dataset to pandas dataframe to properly access the text column
df = dataset.to_pandas()
data = df['text'].tolist()[:1000] # Get first 1000 text entries
# Create the collection with proper vector configuration
# Use the correct vector size for the selected model
vector_size = model.get_sentence_embedding_dimension() or 768 # Get the actual embedding size of the model, default to 768 for mpnet
qdrant_client.create_collection(
collection_name=COLLECTION_NAME,
vectors_config=models.VectorParams(size=vector_size, distance=models.Distance.COSINE),
)
# Generate embeddings manually to ensure compatibility
print("Generating and indexing embeddings...")
embeddings = model.encode(data)
# Prepare points for insertion
points = []
for i, (text, embedding) in enumerate(zip(data, embeddings)):
point = models.PointStruct(
id=i,
vector=embedding.tolist(),
payload={"document": text}
)
points.append(point)
# Upload points to the collection
qdrant_client.upsert(
collection_name=COLLECTION_NAME,
points=points
)
print("Embeddings indexed successfully.")
# --- Search Function ---
def search_in_qdrant(query):
if not query:
return "Please enter a search query."
# Generate embedding for the query
query_embedding = model.encode([query])[0].tolist()
hits = qdrant_client.search(
collection_name=COLLECTION_NAME,
query_vector=query_embedding,
limit=5,
)
results_text = ""
if not hits:
return "No results found."
for hit in hits:
# Check if payload exists and has the document key
if hit.payload and 'document' in hit.payload:
results_text += f"**Score:** {hit.score:.4f}\n"
results_text += f"**Text:** {hit.payload['document']}\n\n"
else:
results_text += f"**Score:** {hit.score:.4f}\n"
results_text += f"**Text:** [No document content available]\n\n"
return results_text
# --- Upload Function ---
def extract_text_from_file(file_path):
"""Extract text from various file types"""
file_extension = file_path.lower().split('.')[-1]
if file_extension == 'txt':
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
elif file_extension == 'pdf':
text = ""
with open(file_path, 'rb') as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
elif file_extension in ['docx', 'doc']:
doc = Document(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
elif file_extension in ['csv', 'xlsx', 'xls']:
if file_extension == 'csv':
df = pd.read_csv(file_path)
else:
df = pd.read_excel(file_path)
# Convert the entire dataframe to text
return df.to_string()
else:
# Try to read as plain text
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
except UnicodeDecodeError:
# If UTF-8 fails, try with different encoding
try:
with open(file_path, 'r', encoding='latin-1') as f:
return f.read()
except:
return "Could not read file: unsupported format or encoding issue"
def upload_to_qdrant(text_content, file_upload=None):
if not text_content and not file_upload:
return "Please provide text content or upload a file."
documents_to_add = []
# Add text content if provided
if text_content:
documents_to_add.append(text_content)
# Process uploaded file if provided
if file_upload:
try:
content = extract_text_from_file(file_upload.name)
documents_to_add.append(content)
except Exception as e:
return f"Error reading file: {str(e)}"
if not documents_to_add:
return "No content to upload."
# Get the next available ID by checking the current max ID in the collection
# For simplicity, we'll just get the count of existing records and start from there
max_id = 0 # Default to 0 if we can't get the count
try:
collection_info = qdrant_client.get_collection(collection_name=COLLECTION_NAME)
if hasattr(collection_info, 'points_count') and collection_info.points_count is not None:
current_count = collection_info.points_count
max_id = current_count # Start from the current count
except:
max_id = 0 # If there's an error, start with 0
# Generate embeddings for the new documents
embeddings = model.encode(documents_to_add)
# Prepare points for insertion
points = []
for i, (doc, embedding) in enumerate(zip(documents_to_add, embeddings)):
point_id = max_id + i + 1 # IDs will be automatically converted as needed by Qdrant
point = models.PointStruct(
id=point_id,
vector=embedding.tolist(),
payload={"document": doc}
)
points.append(point)
# Upload points to the collection
qdrant_client.upsert(
collection_name=COLLECTION_NAME,
points=points
)
return f"Successfully added {len(documents_to_add)} document(s) to the collection."
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Semantic Search with Qdrant and Gradio")
gr.Markdown("Enter a query to search for similar news articles from the AG News dataset.")
with gr.Tab("Search"):
with gr.Row():
search_input = gr.Textbox(label="Search Query", placeholder="e.g., 'Latest news on space exploration'")
search_button = gr.Button("Search")
search_output = gr.Markdown()
search_button.click(search_in_qdrant, inputs=search_input, outputs=search_output)
with gr.Tab("Upload"):
with gr.Row():
text_input = gr.Textbox(label="Text Content", placeholder="Enter text to add to the collection", lines=5)
with gr.Row():
file_input = gr.File(label="Or Upload a File", file_types=['.txt', '.pdf', '.docx', '.csv', '.xlsx', '.xls', '.md'])
upload_button = gr.Button("Upload to Collection")
upload_output = gr.Textbox(label="Upload Status", interactive=False)
upload_button.click(upload_to_qdrant, inputs=[text_input, file_input], outputs=upload_output)
if __name__ == "__main__":
demo.launch() |