utils
Browse files- seal/run_inference.py +82 -0
- seal/utils/__init__.py +1 -0
- seal/utils/inference_utils.py +24 -0
- seal/utils/style_hacks.py +86 -0
seal/run_inference.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from unittest import result
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.utils.data import DataLoader, Subset
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import numpy as np
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
|
| 12 |
+
from utils.inference_utils import InferenceResults, saveResults
|
| 13 |
+
|
| 14 |
+
# Load validation set
|
| 15 |
+
|
| 16 |
+
def load_session(dataset, model, split):
|
| 17 |
+
dataset = load_dataset(dataset, split=split)
|
| 18 |
+
dataloader = DataLoader(
|
| 19 |
+
dataset,
|
| 20 |
+
batch_size=256, drop_last=True
|
| 21 |
+
)
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(model)
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
| 24 |
+
return tokenizer, dataloader, model
|
| 25 |
+
|
| 26 |
+
# Add hook to capture hidden layer
|
| 27 |
+
def get_input(name, model):
|
| 28 |
+
hidden_layers = {}
|
| 29 |
+
def hook(model, input, output):
|
| 30 |
+
if name in hidden_layers:
|
| 31 |
+
del hidden_layers[name]
|
| 32 |
+
hidden_layers[name] = input[0].detach()
|
| 33 |
+
return hook, hidden_layers
|
| 34 |
+
|
| 35 |
+
def run_inference(dataset='yelp_polarity', model='textattack/albert-base-v2-yelp-polarity', split='test', output_path='./assets/data/inference_results'):
|
| 36 |
+
tokenizer, dataloader, model = load_session(dataset,model,split)
|
| 37 |
+
model.eval()
|
| 38 |
+
model.to('cpu')
|
| 39 |
+
hook, hidden_layers = model.classifier.register_forward_hook(get_input('last_layer', model))
|
| 40 |
+
# Run inference on entire dataset
|
| 41 |
+
hidden_list = []
|
| 42 |
+
loss_list = []
|
| 43 |
+
output_list = []
|
| 44 |
+
example = []
|
| 45 |
+
labels = []
|
| 46 |
+
criterion = nn.CrossEntropyLoss(reduction='none')
|
| 47 |
+
softmax = nn.Softmax(dim=1)
|
| 48 |
+
with torch.no_grad():
|
| 49 |
+
for batch_num, batch in tqdm(enumerate(dataloader), total=len(dataloader), position=0, leave=True):
|
| 50 |
+
batch_ex = [ex[:512] for ex in batch['text']]
|
| 51 |
+
inputs = tokenizer(batch_ex, padding=True, return_tensors='pt').to('cpu')
|
| 52 |
+
targets = batch['label']
|
| 53 |
+
|
| 54 |
+
outputs = model(**inputs)['logits']
|
| 55 |
+
loss = criterion(outputs, targets)
|
| 56 |
+
predictions = softmax(outputs)
|
| 57 |
+
|
| 58 |
+
hidden_list.append(hidden_layers['last_layer'].cpu())
|
| 59 |
+
loss_list.append(loss.cpu())
|
| 60 |
+
#output_list.append(predictions[:, 1].cpu())
|
| 61 |
+
output_list.append(np.argmax(predictions, axis=1))
|
| 62 |
+
labels.append(targets)
|
| 63 |
+
example.append(inputs['input_ids'])
|
| 64 |
+
embeddings = torch.vstack(hidden_list)
|
| 65 |
+
#outputs = torch.hstack(output_list)
|
| 66 |
+
losses = torch.hstack(loss_list)
|
| 67 |
+
targets = torch.hstack(labels)
|
| 68 |
+
#inputs = torch.hstack(example)
|
| 69 |
+
results = save_results(embeddings,losses,targets)
|
| 70 |
+
saveResults(os.path.join(output_path,dataset+'.pkl'),results)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def save_results(embeddings, losses, labels):
|
| 75 |
+
results = InferenceResults(
|
| 76 |
+
embeddings = torch.clone(embeddings),
|
| 77 |
+
losses = losses,
|
| 78 |
+
labels = labels
|
| 79 |
+
)
|
| 80 |
+
return results
|
| 81 |
+
|
| 82 |
+
|
seal/utils/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .style_hacks import *
|
seal/utils/inference_utils.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
@dataclass
|
| 6 |
+
class InferenceResults:
|
| 7 |
+
"""
|
| 8 |
+
Class for storing embeddings and losses from running inference on a model.
|
| 9 |
+
|
| 10 |
+
Fields:
|
| 11 |
+
- embeddings: (num_examples x num_dimensions) tensor of last-layer embeddings
|
| 12 |
+
- losses: (num_examples x 1) tensor of losses
|
| 13 |
+
- outputs: optional (num_examples x num_classes) tensor of output logits
|
| 14 |
+
- labels: optional (num_examples x 1) tensor of labels
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
embeddings: torch.Tensor
|
| 18 |
+
losses: torch.Tensor
|
| 19 |
+
outputs: torch.Tensor = None
|
| 20 |
+
labels: torch.Tensor = None
|
| 21 |
+
|
| 22 |
+
def saveResults(fname, results):
|
| 23 |
+
with open(fname, 'wb+') as f:
|
| 24 |
+
pickle.dump(results, f)
|
seal/utils/style_hacks.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
placeholder for all streamlit style hacks
|
| 3 |
+
"""
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def init_style():
|
| 8 |
+
return st.markdown(
|
| 9 |
+
"""
|
| 10 |
+
<style>
|
| 11 |
+
/* Side Bar */
|
| 12 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
|
| 13 |
+
width: 250px;
|
| 14 |
+
}
|
| 15 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
|
| 16 |
+
width: 250px;
|
| 17 |
+
}
|
| 18 |
+
[data-testid="stSidebar"]{
|
| 19 |
+
flex-basis: unset;
|
| 20 |
+
}
|
| 21 |
+
.css-1outpf7 {
|
| 22 |
+
background-color:rgb(254 244 219);
|
| 23 |
+
width:10rem;
|
| 24 |
+
padding:10px 10px 10px 10px;
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
/* Main Panel*/
|
| 28 |
+
.css-18e3th9 {
|
| 29 |
+
padding:10px 10px 10px -200px;
|
| 30 |
+
}
|
| 31 |
+
.css-1ubw6au:last-child{
|
| 32 |
+
background-color:lightblue;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
/* Model Panels : element-container */
|
| 36 |
+
.element-container{
|
| 37 |
+
border-style:none
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
/* Radio Button Direction*/
|
| 41 |
+
div.row-widget.stRadio > div{flex-direction:row;}
|
| 42 |
+
|
| 43 |
+
/* Expander Boz*/
|
| 44 |
+
.streamlit-expander {
|
| 45 |
+
border-width: 0px;
|
| 46 |
+
border-bottom: 1px solid #A29C9B;
|
| 47 |
+
border-radius: 10px;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
.streamlit-expanderHeader {
|
| 51 |
+
font-style: italic;
|
| 52 |
+
font-weight :600;
|
| 53 |
+
font-size:16px;
|
| 54 |
+
padding-top:0px;
|
| 55 |
+
padding-left: 0px;
|
| 56 |
+
color:#A29C9B
|
| 57 |
+
|
| 58 |
+
/* Section Headers */
|
| 59 |
+
.sectionHeader {
|
| 60 |
+
font-size:10px;
|
| 61 |
+
}
|
| 62 |
+
[data-testid="stMarkdownContainer]{
|
| 63 |
+
font-family: sans-serif;
|
| 64 |
+
font-weight: 500;
|
| 65 |
+
font-size: 1.5 rem !important;
|
| 66 |
+
color: rgb(250, 250, 250);
|
| 67 |
+
padding: 1.25rem 0px 1rem;
|
| 68 |
+
margin: 0px;
|
| 69 |
+
line-height: 1.4;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
/* text input*/
|
| 73 |
+
.st-e5 {
|
| 74 |
+
background-color:lightblue;
|
| 75 |
+
}
|
| 76 |
+
/*line special*/
|
| 77 |
+
.line-one{
|
| 78 |
+
border-width: 0px;
|
| 79 |
+
border-bottom: 1px solid #A29C9B;
|
| 80 |
+
border-radius: 50px;
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
</style>
|
| 84 |
+
""",
|
| 85 |
+
unsafe_allow_html=True,
|
| 86 |
+
)
|