Update injection_main.py
Browse files- injection_main.py +4 -4
injection_main.py
CHANGED
|
@@ -238,14 +238,13 @@ def sample_disentangled(
|
|
| 238 |
latents = start_latents.clone()
|
| 239 |
|
| 240 |
latents = latents.repeat(len(prompt), 1, 1, 1)
|
| 241 |
-
# randomly
|
| 242 |
|
| 243 |
latents[1] = generative_latent
|
| 244 |
# assume that the first latent is used for reconstruction
|
| 245 |
-
for i in
|
| 246 |
-
|
| 247 |
if use_content_anchor:
|
| 248 |
-
latents[0] = intermediate_latents[(
|
| 249 |
t = pipe.scheduler.timesteps[i]
|
| 250 |
|
| 251 |
# Expand the latents if we are doing classifier free guidance
|
|
@@ -287,6 +286,7 @@ def sample_disentangled(
|
|
| 287 |
return images
|
| 288 |
|
| 289 |
|
|
|
|
| 290 |
## Inversion
|
| 291 |
@torch.no_grad()
|
| 292 |
def invert(
|
|
|
|
| 238 |
latents = start_latents.clone()
|
| 239 |
|
| 240 |
latents = latents.repeat(len(prompt), 1, 1, 1)
|
| 241 |
+
# randomly initialize the 1st latent for generation
|
| 242 |
|
| 243 |
latents[1] = generative_latent
|
| 244 |
# assume that the first latent is used for reconstruction
|
| 245 |
+
for i in range(start_step, num_inference_steps):
|
|
|
|
| 246 |
if use_content_anchor:
|
| 247 |
+
latents[0] = intermediate_latents[-(i + 1)]
|
| 248 |
t = pipe.scheduler.timesteps[i]
|
| 249 |
|
| 250 |
# Expand the latents if we are doing classifier free guidance
|
|
|
|
| 286 |
return images
|
| 287 |
|
| 288 |
|
| 289 |
+
|
| 290 |
## Inversion
|
| 291 |
@torch.no_grad()
|
| 292 |
def invert(
|