File size: 2,522 Bytes
a345062
 
21e8595
a345062
 
 
 
21e8595
a345062
21e8595
a345062
21e8595
 
a345062
 
 
 
 
 
 
21e8595
 
 
a345062
 
 
21e8595
 
 
 
a345062
21e8595
 
a345062
21e8595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a345062
21e8595
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
import pytest
import torch
from types import SimpleNamespace

from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis

def test_seismic_analysis_orchestrator_no_injection(mocker, mock_llm):
    """
    Testet den Orchestrator im Baseline-Modus (ohne Injektion).
    """
    mock_deltas = [1.0, 2.0, 3.0]
    mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=mock_deltas)

    mock_progress = mocker.MagicMock()

    results = run_seismic_analysis(
        model_id="mock_model",
        prompt_type="test_prompt",
        seed=42,
        num_steps=3,
        concept_to_inject="", # Kein Konzept
        injection_strength=0.0,
        progress_callback=mock_progress
    )

    # ASSERT: `run_silent_cogitation_seismic` wurde mit `injection_vector=None` aufgerufen
    mock_run_seismic.assert_called_once()
    call_args, call_kwargs = mock_run_seismic.call_args
    assert call_kwargs['injection_vector'] is None

    # ASSERT: Die Statistiken sind korrekt
    assert results["stats"]["mean_delta"] == pytest.approx(2.0)

def test_seismic_analysis_orchestrator_with_injection(mocker, mock_llm):
    """
    Testet den Orchestrator mit aktivierter Konzeptinjektion.
    """
    mock_deltas = [5.0, 6.0, 7.0]
    mock_run_seismic = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.run_silent_cogitation_seismic', return_value=mock_deltas)

    # Der `mock_llm` Fixture patcht bereits `get_concept_vector`
    mock_get_concept_vector = mocker.patch('cognitive_mapping_probe.orchestrator_seismograph.get_concept_vector')

    mock_progress = mocker.MagicMock()

    results = run_seismic_analysis(
        model_id="mock_model",
        prompt_type="test_prompt",
        seed=42,
        num_steps=3,
        concept_to_inject="test_concept", # Konzept wird übergeben
        injection_strength=1.5,
        progress_callback=mock_progress
    )

    # ASSERT: `get_concept_vector` wurde aufgerufen
    mock_get_concept_vector.assert_called_once_with(mocker.ANY, "test_concept")

    # ASSERT: `run_silent_cogitation_seismic` wurde mit einem Vektor und Stärke aufgerufen
    mock_run_seismic.assert_called_once()
    call_args, call_kwargs = mock_run_seismic.call_args
    assert call_kwargs['injection_vector'] is not None
    assert call_kwargs['injection_strength'] == 1.5

    # ASSERT: Die Statistiken sind korrekt
    assert results["stats"]["mean_delta"] == pytest.approx(6.0)