File size: 6,765 Bytes
c8fa89c
 
 
8049238
 
b350371
a345062
024ef47
eef89e3
b350371
c8fa89c
024ef47
c8fa89c
8049238
 
 
 
 
 
 
 
024ef47
 
c8fa89c
024ef47
a345062
 
024ef47
 
8049238
 
024ef47
c8fa89c
8049238
024ef47
c8fa89c
024ef47
395b2f3
024ef47
395b2f3
494a4d9
 
 
 
 
8049238
395b2f3
024ef47
8049238
395b2f3
21e8595
905c230
b3585ba
21e8595
024ef47
 
5028f2b
024ef47
 
 
5028f2b
024ef47
 
 
 
 
 
 
be6c085
024ef47
 
 
 
be6c085
024ef47
 
b350371
024ef47
 
 
 
c8fa89c
 
024ef47
395b2f3
024ef47
 
5028f2b
024ef47
 
 
 
 
 
 
 
494a4d9
 
395b2f3
494a4d9
 
 
395b2f3
5028f2b
 
494a4d9
 
 
395b2f3
 
024ef47
 
 
 
 
 
395b2f3
024ef47
c8fa89c
 
a345062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gradio as gr
import pandas as pd
import traceback
import gc
import torch

from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
from cognitive_mapping_probe.utils import dbg

theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")

def cleanup_memory():
    """Eine zentrale Funktion zum Aufräumen des Speichers nach einem Lauf."""
    dbg("Cleaning up memory...")
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    dbg("Memory cleanup complete.")

def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
    """Wrapper für ein einzelnes manuelles Experiment."""
    try:
        results = run_seismic_analysis(*args, progress_callback=progress)
        stats = results.get("stats", {})
        deltas = results.get("state_deltas", [])
        df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
        stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"

        cleanup_memory()
        return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, results
    except Exception:
        cleanup_memory()
        return f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```", pd.DataFrame(), {}

def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
    """Wrapper für die automatisierte Experiment-Suite mit Visualisierung."""
    try:
        summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)

        # DEBUG-Ausgabe zur Überprüfung der DataFrame-Struktur
        dbg("Plot DataFrame Head:\n", plot_df.head())
        dbg("Plot DataFrame Dtypes:\n", plot_df.dtypes)

        cleanup_memory()
        return summary_df, plot_df, all_results
    except Exception:
        cleanup_memory()
        return pd.DataFrame(), pd.DataFrame(), f"### ❌ Auto-Experiment Failed\n```\n{traceback.format_exc()}\n```"

with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
    gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Machine Psychology")

    with gr.Tabs():
        with gr.TabItem("🔬 Manual Single Run"):
            # ... (Dieser Tab bleibt unverändert) ...
            gr.Markdown("Führe ein einzelnes Experiment mit manuellen Parametern durch, um Hypothesen zu explorieren.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    # ... (Parameter unverändert) ...
                    gr.Markdown("### 1. General Parameters")
                    manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
                    manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
                    gr.Markdown("### 2. Modulation Parameters")
                    manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness' (leave blank for baseline)")
                    manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
                    manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
                with gr.Column(scale=2):
                    gr.Markdown("### Single Run Results")
                    manual_verdict = gr.Markdown("Die Analyse erscheint hier.")
                    manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400, interactive=True)
                    with gr.Accordion("Raw JSON Output", open=False):
                        manual_raw_json = gr.JSON()

            manual_run_btn.click(
                fn=run_single_analysis_display,
                inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
                outputs=[manual_verdict, manual_plot, manual_raw_json]
            )

        with gr.TabItem("🚀 Automated Suite"):
            gr.Markdown("Führe eine vordefinierte, kuratierte Reihe von Experimenten durch und visualisiere die Ergebnisse vergleichend.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    # ... (Parameter unverändert) ...
                    gr.Markdown("### Auto-Experiment Parameters")
                    auto_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
                    auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    auto_experiment_name = gr.Dropdown(choices=list(get_curated_experiments().keys()), value="Calm vs. Chaos", label="Curated Experiment Protocol")
                    auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
                with gr.Column(scale=2):
                    gr.Markdown("### Suite Results Summary")
                    # FINALE KORREKTUR: Wir definieren die Spaltennamen explizit,
                    # um jegliche Ambiguität für Gradio zu beseitigen.
                    auto_plot_output = gr.LinePlot(
                        x="Step",
                        y="Delta",
                        color="Experiment",
                        title="Comparative Cognitive Dynamics",
                        color_legend_title="Experiment Runs",
                        color_legend_position="bottom",
                        show_label=True,
                        height=400,
                        interactive=True
                    )
                    auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
                    with gr.Accordion("Raw JSON for all runs", open=False):
                        auto_raw_json = gr.JSON()

            auto_run_btn.click(
                fn=run_auto_suite_display,
                inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
                outputs=[auto_summary_df, auto_plot_output, auto_raw_json]
            )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)