File size: 5,838 Bytes
c8fa89c
 
 
b350371
a345062
024ef47
eef89e3
b350371
c8fa89c
024ef47
c8fa89c
024ef47
 
c8fa89c
024ef47
a345062
 
024ef47
 
 
c8fa89c
024ef47
c8fa89c
024ef47
395b2f3
024ef47
395b2f3
 
024ef47
395b2f3
21e8595
be6c085
 
21e8595
024ef47
 
 
 
 
 
 
 
 
 
 
 
be6c085
024ef47
 
 
 
be6c085
 
024ef47
 
b350371
024ef47
 
 
 
c8fa89c
 
024ef47
395b2f3
024ef47
 
 
 
 
 
 
 
 
 
be6c085
395b2f3
be6c085
395b2f3
be6c085
395b2f3
 
024ef47
 
 
 
 
 
395b2f3
024ef47
c8fa89c
 
a345062
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import pandas as pd
import traceback

from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
from cognitive_mapping_probe.utils import dbg

theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")

def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
    """Wrapper für ein einzelnes manuelles Experiment."""
    try:
        results = run_seismic_analysis(*args, progress_callback=progress)
        stats = results.get("stats", {})
        deltas = results.get("state_deltas", [])
        df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
        stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
        return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, results
    except Exception:
        return f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```", pd.DataFrame(), {}

def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
    """Wrapper für die automatisierte Experiment-Suite mit Visualisierung."""
    try:
        summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
        return summary_df, plot_df, all_results
    except Exception:
        return pd.DataFrame(), pd.DataFrame(), f"### ❌ Auto-Experiment Failed\n```\n{traceback.format_exc()}\n```"

with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.2") as demo:
    gr.Markdown("# 🧠 Cognitive Seismograph 2.2: Advanced Experiment Suite")

    with gr.Tabs():
        with gr.TabItem("🔬 Manual Single Run"):
            gr.Markdown("Führe ein einzelnes Experiment mit manuellen Parametern durch, um Hypothesen zu explorieren.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    gr.Markdown("### 1. General Parameters")
                    manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
                    manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
                    gr.Markdown("### 2. Modulation Parameters")
                    manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness' (leave blank for baseline)")
                    manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
                    manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
                with gr.Column(scale=2):
                    gr.Markdown("### Single Run Results")
                    manual_verdict = gr.Markdown("Die Analyse erscheint hier.")
                    # KORREKTUR: `interactive=True` für Legende hinzugefügt
                    manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400, interactive=True)
                    with gr.Accordion("Raw JSON Output", open=False):
                        manual_raw_json = gr.JSON()

            manual_run_btn.click(
                fn=run_single_analysis_display,
                inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
                outputs=[manual_verdict, manual_plot, manual_raw_json]
            )

        with gr.TabItem("🚀 Automated Suite"):
            gr.Markdown("Führe eine vordefinierte, kuratierte Reihe von Experimenten durch und visualisiere die Ergebnisse vergleichend.")
            with gr.Row(variant='panel'):
                with gr.Column(scale=1):
                    gr.Markdown("### Auto-Experiment Parameters")
                    auto_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
                    auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
                    auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
                    auto_experiment_name = gr.Dropdown(choices=list(get_curated_experiments().keys()), value="Calm vs. Chaos", label="Curated Experiment Protocol")
                    auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
                with gr.Column(scale=2):
                    gr.Markdown("### Suite Results Summary")
                    # KORREKTUR: `interactive=True` für Legende hinzugefügt
                    auto_plot_output = gr.LinePlot(
                        x="Step", y="Delta", color="Experiment",
                        title="Comparative Cognitive Dynamics",
                        show_label=True, height=400, interactive=True
                    )
                    auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
                    with gr.Accordion("Raw JSON for all runs", open=False):
                        auto_raw_json = gr.JSON()

            auto_run_btn.click(
                fn=run_auto_suite_display,
                inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name],
                outputs=[auto_summary_df, auto_plot_output, auto_raw_json]
            )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)