Spaces:
Sleeping
Sleeping
Commit
·
4478c62
1
Parent(s):
d8f82fc
fix
Browse files
cognitive_mapping_probe/resonance.py
CHANGED
|
@@ -19,21 +19,22 @@ def run_silent_cogitation(
|
|
| 19 |
"""
|
| 20 |
Simulates the "silent thought" process.
|
| 21 |
|
| 22 |
-
FINAL PATCH:
|
| 23 |
-
|
| 24 |
-
|
| 25 |
"""
|
| 26 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 27 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 28 |
|
| 29 |
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True)
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
kv_cache = outputs.past_key_values
|
| 34 |
|
| 35 |
-
previous_hidden_state =
|
| 36 |
termination_reason = "max_steps_reached"
|
|
|
|
| 37 |
|
| 38 |
hook_handle = None
|
| 39 |
if injection_vector is not None and injection_strength > 0:
|
|
@@ -44,23 +45,24 @@ def run_silent_cogitation(
|
|
| 44 |
dbg(f"Injection enabled: Layer {injection_layer}, Strength {injection_strength:.2f}")
|
| 45 |
|
| 46 |
def injection_hook(module, layer_input):
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
return (modified_hidden_states,) + layer_input[1:]
|
| 49 |
|
| 50 |
for i in tqdm(range(num_steps), desc=f"Simulating (Temp {temperature:.2f}, Strength {injection_strength:.2f})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
-
# Bei sehr niedriger Temperatur erzwingen wir `argmax` (Determinismus)
|
| 54 |
if temperature <= 0.1:
|
| 55 |
-
# `argmax` gibt einen 1D-Tensor zurück. Wir
|
| 56 |
-
# der Form [batch_size, 1] erweitern, um konsistent mit `multinomial` zu sein.
|
| 57 |
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
|
| 58 |
else:
|
| 59 |
probabilities = torch.nn.functional.softmax(next_token_logits / temperature, dim=-1)
|
| 60 |
-
# `multinomial` erwartet 2D [batch, vocab],
|
| 61 |
-
next_token_id = torch.multinomial(probabilities
|
| 62 |
|
| 63 |
-
# `last_token_id` wird am Ende des Loops für die Verifikation zurückgegeben
|
| 64 |
last_token_id = next_token_id
|
| 65 |
|
| 66 |
try:
|
|
@@ -79,17 +81,21 @@ def run_silent_cogitation(
|
|
| 79 |
hook_handle.remove()
|
| 80 |
hook_handle = None
|
| 81 |
|
| 82 |
-
|
| 83 |
kv_cache = outputs.past_key_values
|
| 84 |
|
| 85 |
-
delta = torch.norm(
|
| 86 |
if delta < 1e-4 and i > 10:
|
| 87 |
termination_reason = "converged"
|
| 88 |
dbg(f"State converged after {i+1} steps (delta={delta:.6f}).")
|
| 89 |
break
|
| 90 |
|
| 91 |
-
previous_hidden_state =
|
| 92 |
|
| 93 |
dbg(f"Silent cogitation finished. Reason: {termination_reason}")
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"""
|
| 20 |
Simulates the "silent thought" process.
|
| 21 |
|
| 22 |
+
FINAL PATCH 2: Addresses a deep dimensionality mismatch. The hidden_state passed
|
| 23 |
+
to the lm_head must be 2D to ensure the subsequent forward pass doesn't create
|
| 24 |
+
tensors with incorrect dimensions for the KV-cache update.
|
| 25 |
"""
|
| 26 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 27 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 28 |
|
| 29 |
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True)
|
| 30 |
|
| 31 |
+
# Der `hidden_state` muss hier die Form [batch, hidden_dim] haben.
|
| 32 |
+
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 33 |
kv_cache = outputs.past_key_values
|
| 34 |
|
| 35 |
+
previous_hidden_state = hidden_state_2d.clone()
|
| 36 |
termination_reason = "max_steps_reached"
|
| 37 |
+
last_token_id = inputs.input_ids[:, -1].unsqueeze(-1) # Initialer Wert
|
| 38 |
|
| 39 |
hook_handle = None
|
| 40 |
if injection_vector is not None and injection_strength > 0:
|
|
|
|
| 45 |
dbg(f"Injection enabled: Layer {injection_layer}, Strength {injection_strength:.2f}")
|
| 46 |
|
| 47 |
def injection_hook(module, layer_input):
|
| 48 |
+
# Der Hook operiert auf dem Input, der bereits 3D ist [batch, seq_len, hidden_dim]
|
| 49 |
+
# Wir müssen den 2D injection_vector entsprechend erweitern
|
| 50 |
+
injection_3d = injection_vector.unsqueeze(0).unsqueeze(0)
|
| 51 |
+
modified_hidden_states = layer_input[0] + (injection_3d * injection_strength)
|
| 52 |
return (modified_hidden_states,) + layer_input[1:]
|
| 53 |
|
| 54 |
for i in tqdm(range(num_steps), desc=f"Simulating (Temp {temperature:.2f}, Strength {injection_strength:.2f})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 55 |
+
# Die `lm_head` erwartet einen 2D- oder 3D-Tensor. 2D ist sicherer.
|
| 56 |
+
next_token_logits = llm.model.lm_head(hidden_state_2d)
|
| 57 |
|
|
|
|
| 58 |
if temperature <= 0.1:
|
| 59 |
+
# `argmax` gibt einen 1D-Tensor zurück. Wir erweitern ihn auf [1, 1]
|
|
|
|
| 60 |
next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(-1)
|
| 61 |
else:
|
| 62 |
probabilities = torch.nn.functional.softmax(next_token_logits / temperature, dim=-1)
|
| 63 |
+
# `multinomial` erwartet 2D [batch, vocab], `next_token_logits` ist bereits 2D
|
| 64 |
+
next_token_id = torch.multinomial(probabilities, num_samples=1)
|
| 65 |
|
|
|
|
| 66 |
last_token_id = next_token_id
|
| 67 |
|
| 68 |
try:
|
|
|
|
| 81 |
hook_handle.remove()
|
| 82 |
hook_handle = None
|
| 83 |
|
| 84 |
+
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 85 |
kv_cache = outputs.past_key_values
|
| 86 |
|
| 87 |
+
delta = torch.norm(hidden_state_2d - previous_hidden_state).item()
|
| 88 |
if delta < 1e-4 and i > 10:
|
| 89 |
termination_reason = "converged"
|
| 90 |
dbg(f"State converged after {i+1} steps (delta={delta:.6f}).")
|
| 91 |
break
|
| 92 |
|
| 93 |
+
previous_hidden_state = hidden_state_2d.clone()
|
| 94 |
|
| 95 |
dbg(f"Silent cogitation finished. Reason: {termination_reason}")
|
| 96 |
|
| 97 |
+
# WICHTIG: Die `verification`-Funktion erwartet einen 3D-Tensor [batch, seq_len=1, hidden_dim]
|
| 98 |
+
# Wir stellen diese Form für die Rückgabe sicher.
|
| 99 |
+
final_hidden_state_3d = hidden_state_2d.unsqueeze(1)
|
| 100 |
+
|
| 101 |
+
return final_hidden_state_3d, kv_cache, last_token_id, termination_reason
|