Spaces:
Sleeping
Sleeping
Commit
·
64ad029
1
Parent(s):
b3585ba
v2.3
Browse files
app.py
CHANGED
|
@@ -9,56 +9,85 @@ from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_
|
|
| 9 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 10 |
from cognitive_mapping_probe.utils import dbg
|
| 11 |
|
|
|
|
| 12 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 13 |
|
|
|
|
|
|
|
| 14 |
def cleanup_memory():
|
| 15 |
-
"""Eine zentrale Funktion zum Aufräumen des
|
| 16 |
dbg("Cleaning up memory...")
|
| 17 |
gc.collect()
|
| 18 |
if torch.cuda.is_available():
|
| 19 |
torch.cuda.empty_cache()
|
| 20 |
dbg("Memory cleanup complete.")
|
| 21 |
|
|
|
|
|
|
|
| 22 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 23 |
"""Wrapper für ein einzelnes manuelles Experiment."""
|
| 24 |
try:
|
|
|
|
| 25 |
results = run_seismic_analysis(*args, progress_callback=progress)
|
| 26 |
stats = results.get("stats", {})
|
| 27 |
deltas = results.get("state_deltas", [])
|
|
|
|
|
|
|
| 28 |
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 29 |
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 30 |
|
| 31 |
-
cleanup_memory()
|
| 32 |
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, results
|
| 33 |
except Exception:
|
| 34 |
-
cleanup_memory()
|
| 35 |
return f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```", pd.DataFrame(), {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 38 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
dbg("Plot DataFrame Head:\n", plot_df.head())
|
| 44 |
-
dbg("Plot DataFrame Dtypes:\n", plot_df.dtypes)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
| 48 |
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
cleanup_memory()
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 53 |
-
gr.Markdown("# 🧠 Cognitive Seismograph 2.3:
|
| 54 |
|
| 55 |
with gr.Tabs():
|
| 56 |
with gr.TabItem("🔬 Manual Single Run"):
|
| 57 |
-
# ... (Dieser Tab bleibt unverändert) ...
|
| 58 |
gr.Markdown("Führe ein einzelnes Experiment mit manuellen Parametern durch, um Hypothesen zu explorieren.")
|
| 59 |
with gr.Row(variant='panel'):
|
| 60 |
with gr.Column(scale=1):
|
| 61 |
-
# ... (Parameter unverändert) ...
|
| 62 |
gr.Markdown("### 1. General Parameters")
|
| 63 |
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 64 |
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
|
@@ -85,7 +114,6 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 85 |
gr.Markdown("Führe eine vordefinierte, kuratierte Reihe von Experimenten durch und visualisiere die Ergebnisse vergleichend.")
|
| 86 |
with gr.Row(variant='panel'):
|
| 87 |
with gr.Column(scale=1):
|
| 88 |
-
# ... (Parameter unverändert) ...
|
| 89 |
gr.Markdown("### Auto-Experiment Parameters")
|
| 90 |
auto_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 91 |
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
|
|
@@ -94,19 +122,7 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 94 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
| 95 |
with gr.Column(scale=2):
|
| 96 |
gr.Markdown("### Suite Results Summary")
|
| 97 |
-
|
| 98 |
-
# um jegliche Ambiguität für Gradio zu beseitigen.
|
| 99 |
-
auto_plot_output = gr.LinePlot(
|
| 100 |
-
x="Step",
|
| 101 |
-
y="Delta",
|
| 102 |
-
color="Experiment",
|
| 103 |
-
title="Comparative Cognitive Dynamics",
|
| 104 |
-
color_legend_title="Experiment Runs",
|
| 105 |
-
color_legend_position="bottom",
|
| 106 |
-
show_label=True,
|
| 107 |
-
height=400,
|
| 108 |
-
interactive=True
|
| 109 |
-
)
|
| 110 |
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
|
| 111 |
with gr.Accordion("Raw JSON for all runs", open=False):
|
| 112 |
auto_raw_json = gr.JSON()
|
|
|
|
| 9 |
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS
|
| 10 |
from cognitive_mapping_probe.utils import dbg
|
| 11 |
|
| 12 |
+
# --- UI Theme ---
|
| 13 |
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white")
|
| 14 |
|
| 15 |
+
# --- Hilfsfunktionen ---
|
| 16 |
+
|
| 17 |
def cleanup_memory():
|
| 18 |
+
"""Eine zentrale Funktion zum Aufräumen des VRAM und des Python-Speichers."""
|
| 19 |
dbg("Cleaning up memory...")
|
| 20 |
gc.collect()
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
torch.cuda.empty_cache()
|
| 23 |
dbg("Memory cleanup complete.")
|
| 24 |
|
| 25 |
+
# --- Wrapper für Gradio-Funktionalität ---
|
| 26 |
+
|
| 27 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 28 |
"""Wrapper für ein einzelnes manuelles Experiment."""
|
| 29 |
try:
|
| 30 |
+
# Führe die Analyse durch
|
| 31 |
results = run_seismic_analysis(*args, progress_callback=progress)
|
| 32 |
stats = results.get("stats", {})
|
| 33 |
deltas = results.get("state_deltas", [])
|
| 34 |
+
|
| 35 |
+
# Bereite die Ausgaben vor
|
| 36 |
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 37 |
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 38 |
|
|
|
|
| 39 |
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, results
|
| 40 |
except Exception:
|
|
|
|
| 41 |
return f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```", pd.DataFrame(), {}
|
| 42 |
+
finally:
|
| 43 |
+
# Stelle sicher, dass der Speicher in jedem Fall aufgeräumt wird
|
| 44 |
+
cleanup_memory()
|
| 45 |
+
|
| 46 |
+
# Definiere die Plot-Parameter an einer zentralen Stelle für Konsistenz
|
| 47 |
+
PLOT_PARAMS = {
|
| 48 |
+
"x": "Step",
|
| 49 |
+
"y": "Delta",
|
| 50 |
+
"color": "Experiment",
|
| 51 |
+
"title": "Comparative Cognitive Dynamics",
|
| 52 |
+
"color_legend_title": "Experiment Runs",
|
| 53 |
+
"color_legend_position": "bottom",
|
| 54 |
+
"show_label": True,
|
| 55 |
+
"height": 400,
|
| 56 |
+
"interactive": True
|
| 57 |
+
}
|
| 58 |
|
| 59 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 60 |
+
"""
|
| 61 |
+
Wrapper für die automatisierte Experiment-Suite.
|
| 62 |
+
Gibt eine neue `gr.LinePlot`-Instanz zurück, um den State-Leak-Bug zu beheben.
|
| 63 |
+
"""
|
| 64 |
try:
|
| 65 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 66 |
|
| 67 |
+
dbg("Plot DataFrame Head for Auto-Suite:\n", plot_df.head())
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# WISSENSCHAFTLICHE KORREKTUR: Erzeuge eine komplett neue Plot-Komponente
|
| 70 |
+
# mit den neuen Daten. Dies zwingt Gradio, den alten Zustand zu verwerfen.
|
| 71 |
+
new_plot = gr.LinePlot(value=plot_df, **PLOT_PARAMS)
|
| 72 |
+
|
| 73 |
+
return summary_df, new_plot, all_results
|
| 74 |
except Exception:
|
| 75 |
+
# Im Fehlerfall, gib leere, aber korrekt typisierte Komponenten zurück
|
| 76 |
+
empty_plot = gr.LinePlot(value=pd.DataFrame(), **PLOT_PARAMS)
|
| 77 |
+
return pd.DataFrame(), empty_plot, f"### ❌ Auto-Experiment Failed\n```\n{traceback.format_exc()}\n```"
|
| 78 |
+
finally:
|
| 79 |
cleanup_memory()
|
| 80 |
+
|
| 81 |
+
# --- Gradio UI-Definition ---
|
| 82 |
|
| 83 |
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
| 84 |
+
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite")
|
| 85 |
|
| 86 |
with gr.Tabs():
|
| 87 |
with gr.TabItem("🔬 Manual Single Run"):
|
|
|
|
| 88 |
gr.Markdown("Führe ein einzelnes Experiment mit manuellen Parametern durch, um Hypothesen zu explorieren.")
|
| 89 |
with gr.Row(variant='panel'):
|
| 90 |
with gr.Column(scale=1):
|
|
|
|
| 91 |
gr.Markdown("### 1. General Parameters")
|
| 92 |
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 93 |
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
|
|
|
| 114 |
gr.Markdown("Führe eine vordefinierte, kuratierte Reihe von Experimenten durch und visualisiere die Ergebnisse vergleichend.")
|
| 115 |
with gr.Row(variant='panel'):
|
| 116 |
with gr.Column(scale=1):
|
|
|
|
| 117 |
gr.Markdown("### Auto-Experiment Parameters")
|
| 118 |
auto_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 119 |
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run")
|
|
|
|
| 122 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
| 123 |
with gr.Column(scale=2):
|
| 124 |
gr.Markdown("### Suite Results Summary")
|
| 125 |
+
auto_plot_output = gr.LinePlot(**PLOT_PARAMS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True)
|
| 127 |
with gr.Accordion("Raw JSON for all runs", open=False):
|
| 128 |
auto_raw_json = gr.JSON()
|