|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
import traceback |
|
|
import gc |
|
|
import torch |
|
|
import json |
|
|
|
|
|
from cognitive_mapping_probe.orchestrator_seismograph import run_seismic_analysis |
|
|
from cognitive_mapping_probe.auto_experiment import run_auto_suite, get_curated_experiments |
|
|
from cognitive_mapping_probe.prompts import RESONANCE_PROMPTS |
|
|
from cognitive_mapping_probe.utils import dbg |
|
|
|
|
|
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue").set(body_background_fill="#f0f4f9", block_background_fill="white") |
|
|
|
|
|
def cleanup_memory(): |
|
|
"""Eine zentrale Funktion zum Aufräumen des Speichers nach einem Lauf.""" |
|
|
dbg("Cleaning up memory...") |
|
|
gc.collect() |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
dbg("Memory cleanup complete.") |
|
|
|
|
|
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)): |
|
|
"""Wrapper für ein einzelnes manuelles Experiment mit robuster Fehlerbehandlung.""" |
|
|
try: |
|
|
results = run_seismic_analysis(*args, progress_callback=progress) |
|
|
stats, deltas = results.get("stats", {}), results.get("state_deltas", []) |
|
|
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas}) |
|
|
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n" |
|
|
serializable_results = json.dumps(results, indent=2, default=str) |
|
|
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results |
|
|
except Exception: |
|
|
|
|
|
error_message = f"### ❌ Analysis Failed\n```\n{traceback.format_exc()}\n```" |
|
|
return error_message, pd.DataFrame(), "{}" |
|
|
finally: |
|
|
cleanup_memory() |
|
|
|
|
|
PLOT_PARAMS = { |
|
|
"x": "Step", "y": "Delta", "color": "Experiment", |
|
|
"title": "Comparative Cognitive Dynamics", "color_legend_title": "Experiment Runs", |
|
|
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True |
|
|
} |
|
|
|
|
|
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)): |
|
|
""" |
|
|
Wrapper für die automatisierte Experiment-Suite mit robuster Fehlerbehandlung. |
|
|
""" |
|
|
try: |
|
|
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress) |
|
|
new_plot = gr.LinePlot(value=plot_df, **PLOT_PARAMS) |
|
|
serializable_results = json.dumps(all_results, indent=2, default=str) |
|
|
return summary_df, new_plot, serializable_results |
|
|
except Exception: |
|
|
|
|
|
|
|
|
empty_plot = gr.LinePlot(value=pd.DataFrame(), **PLOT_PARAMS) |
|
|
error_string_for_json = json.dumps({"error": traceback.format_exc()}, indent=2) |
|
|
return pd.DataFrame([{"Error": "Experiment failed. See Raw JSON."}]), empty_plot, error_string_for_json |
|
|
finally: |
|
|
cleanup_memory() |
|
|
|
|
|
with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo: |
|
|
gr.Markdown("# 🧠 Cognitive Seismograph 2.3: Advanced Experiment Suite") |
|
|
|
|
|
with gr.Tabs(): |
|
|
with gr.TabItem("🔬 Manual Single Run"): |
|
|
|
|
|
gr.Markdown("Run a single experiment with manual parameters to explore hypotheses.") |
|
|
with gr.Row(variant='panel'): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### 1. General Parameters") |
|
|
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID") |
|
|
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type") |
|
|
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") |
|
|
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps") |
|
|
gr.Markdown("### 2. Modulation Parameters") |
|
|
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness' (leave blank for baseline)") |
|
|
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength") |
|
|
manual_run_btn = gr.Button("Run Single Analysis", variant="primary") |
|
|
with gr.Column(scale=2): |
|
|
gr.Markdown("### Single Run Results") |
|
|
manual_verdict = gr.Markdown("Analysis results will appear here.") |
|
|
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400, interactive=True) |
|
|
with gr.Accordion("Raw JSON Output", open=False): |
|
|
manual_raw_json = gr.JSON() |
|
|
manual_run_btn.click( |
|
|
fn=run_single_analysis_display, |
|
|
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength], |
|
|
outputs=[manual_verdict, manual_plot, manual_raw_json] |
|
|
) |
|
|
|
|
|
with gr.TabItem("🚀 Automated Suite"): |
|
|
|
|
|
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.") |
|
|
with gr.Row(variant='panel'): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown("### Auto-Experiment Parameters") |
|
|
auto_model_id = gr.Textbox(value="google/gemma-3-4b-it", label="Model ID") |
|
|
auto_num_steps = gr.Slider(50, 1000, 300, step=10, label="Steps per Run") |
|
|
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed") |
|
|
auto_experiment_name = gr.Dropdown(choices=list(get_curated_experiments().keys()), value="Therapeutic Intervention (4B-Model)", label="Curated Experiment Protocol") |
|
|
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary") |
|
|
with gr.Column(scale=2): |
|
|
gr.Markdown("### Suite Results Summary") |
|
|
auto_plot_output = gr.LinePlot(**PLOT_PARAMS) |
|
|
auto_summary_df = gr.DataFrame(label="Comparative Statistical Signature", wrap=True) |
|
|
with gr.Accordion("Raw JSON for all runs", open=False): |
|
|
auto_raw_json = gr.JSON() |
|
|
auto_run_btn.click( |
|
|
fn=run_auto_suite_display, |
|
|
inputs=[auto_model_id, auto_num_steps, auto_seed, auto_experiment_name], |
|
|
outputs=[auto_summary_df, auto_plot_output, auto_raw_json] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True) |
|
|
|