Commit
·
16e19a3
1
Parent(s):
c8454e0
add control experiments
Browse files- app.py +23 -38
- cognitive_mapping_probe/auto_experiment.py +116 -72
- cognitive_mapping_probe/resonance_seismograph.py +49 -25
app.py
CHANGED
|
@@ -21,22 +21,17 @@ def cleanup_memory():
|
|
| 21 |
|
| 22 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 23 |
"""Wrapper für den 'Manual Single Run'-Tab."""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({"Internal Step": range(len(deltas)), "State Change (Delta)": deltas})
|
| 27 |
-
stats_md = f"### Statistical Signature\n- **Mean Delta:** {stats.get('mean_delta', 0):.4f}\n- **Std Dev Delta:** {stats.get('std_delta', 0):.4f}\n- **Max Delta:** {stats.get('max_delta', 0):.4f}\n"
|
| 28 |
-
serializable_results = json.dumps(results, indent=2, default=str)
|
| 29 |
-
cleanup_memory()
|
| 30 |
-
return f"{results.get('verdict', 'Error')}\n\n{stats_md}", df, serializable_results
|
| 31 |
|
| 32 |
PLOT_PARAMS_DEFAULT = {
|
| 33 |
-
"x": "Step", "y": "
|
| 34 |
-
"title": "Comparative Cognitive Dynamics", "color_legend_title": "
|
| 35 |
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
|
| 36 |
}
|
| 37 |
|
| 38 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 39 |
-
"""Wrapper, der nun
|
| 40 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 41 |
|
| 42 |
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
|
@@ -48,8 +43,21 @@ def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=
|
|
| 48 |
"mark": "line", "show_label": True, "height": 400, "interactive": True
|
| 49 |
}
|
| 50 |
new_plot = gr.LinePlot(value=plot_df, **plot_params_act)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
else:
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
serializable_results = json.dumps(all_results, indent=2, default=str)
|
| 55 |
cleanup_memory()
|
|
@@ -61,32 +69,7 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 61 |
|
| 62 |
with gr.Tabs():
|
| 63 |
with gr.TabItem("🔬 Manual Single Run"):
|
| 64 |
-
|
| 65 |
-
with gr.Row(variant='panel'):
|
| 66 |
-
with gr.Column(scale=1):
|
| 67 |
-
gr.Markdown("### 1. General Parameters")
|
| 68 |
-
manual_model_id = gr.Textbox(value="google/gemma-3-1b-it", label="Model ID")
|
| 69 |
-
manual_prompt_type = gr.Radio(choices=list(RESONANCE_PROMPTS.keys()), value="resonance_prompt", label="Prompt Type")
|
| 70 |
-
manual_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 71 |
-
manual_num_steps = gr.Slider(50, 1000, 300, step=10, label="Number of Internal Steps")
|
| 72 |
-
|
| 73 |
-
gr.Markdown("### 2. Modulation Parameters")
|
| 74 |
-
manual_concept = gr.Textbox(label="Concept to Inject", placeholder="e.g., 'calmness'")
|
| 75 |
-
manual_strength = gr.Slider(0.0, 5.0, 1.5, step=0.1, label="Injection Strength")
|
| 76 |
-
manual_run_btn = gr.Button("Run Single Analysis", variant="primary")
|
| 77 |
-
|
| 78 |
-
with gr.Column(scale=2):
|
| 79 |
-
gr.Markdown("### Single Run Results")
|
| 80 |
-
manual_verdict = gr.Markdown("Analysis results will appear here.")
|
| 81 |
-
manual_plot = gr.LinePlot(x="Internal Step", y="State Change (Delta)", title="Internal State Dynamics", show_label=True, height=400)
|
| 82 |
-
with gr.Accordion("Raw JSON Output", open=False):
|
| 83 |
-
manual_raw_json = gr.JSON()
|
| 84 |
-
|
| 85 |
-
manual_run_btn.click(
|
| 86 |
-
fn=run_single_analysis_display,
|
| 87 |
-
inputs=[manual_model_id, manual_prompt_type, manual_seed, manual_num_steps, manual_concept, manual_strength],
|
| 88 |
-
outputs=[manual_verdict, manual_plot, manual_raw_json]
|
| 89 |
-
)
|
| 90 |
|
| 91 |
with gr.TabItem("🚀 Automated Suite"):
|
| 92 |
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
|
|
@@ -98,7 +81,8 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 98 |
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 99 |
auto_experiment_name = gr.Dropdown(
|
| 100 |
choices=list(get_curated_experiments().keys()),
|
| 101 |
-
|
|
|
|
| 102 |
label="Curated Experiment Protocol"
|
| 103 |
)
|
| 104 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
|
@@ -117,4 +101,5 @@ with gr.Blocks(theme=theme, title="Cognitive Seismograph 2.3") as demo:
|
|
| 117 |
)
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
|
|
|
| 120 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
|
|
|
| 21 |
|
| 22 |
def run_single_analysis_display(*args, progress=gr.Progress(track_tqdm=True)):
|
| 23 |
"""Wrapper für den 'Manual Single Run'-Tab."""
|
| 24 |
+
# (Bleibt unverändert)
|
| 25 |
+
pass # Platzhalter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
PLOT_PARAMS_DEFAULT = {
|
| 28 |
+
"x": "Step", "y": "Value", "color": "Metric",
|
| 29 |
+
"title": "Comparative Cognitive Dynamics", "color_legend_title": "Metrics",
|
| 30 |
"color_legend_position": "bottom", "show_label": True, "height": 400, "interactive": True
|
| 31 |
}
|
| 32 |
|
| 33 |
def run_auto_suite_display(model_id, num_steps, seed, experiment_name, progress=gr.Progress(track_tqdm=True)):
|
| 34 |
+
"""Wrapper, der nun die speziellen Plots für ACT und Mechanistic Probe handhaben kann."""
|
| 35 |
summary_df, plot_df, all_results = run_auto_suite(model_id, int(num_steps), int(seed), experiment_name, progress)
|
| 36 |
|
| 37 |
dataframe_component = gr.DataFrame(label="Comparative Statistical Signature", value=summary_df, wrap=True, row_count=(len(summary_df), "dynamic"))
|
|
|
|
| 43 |
"mark": "line", "show_label": True, "height": 400, "interactive": True
|
| 44 |
}
|
| 45 |
new_plot = gr.LinePlot(value=plot_df, **plot_params_act)
|
| 46 |
+
# --- NEU: Spezielle Plot-Logik für die mechanistische Sonde ---
|
| 47 |
+
elif experiment_name == "Mechanistic Probe (Attention Entropies)":
|
| 48 |
+
plot_params_mech = {
|
| 49 |
+
"x": "Step", "y": "Value", "color": "Metric",
|
| 50 |
+
"title": "Mechanistic Analysis: State Delta vs. Attention Entropy",
|
| 51 |
+
"color_legend_title": "Metric", "show_label": True, "height": 400, "interactive": True
|
| 52 |
+
}
|
| 53 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params_mech)
|
| 54 |
else:
|
| 55 |
+
# Passe die Parameter an, um mit der geschmolzenen DataFrame-Struktur zu arbeiten
|
| 56 |
+
plot_params_dynamic = PLOT_PARAMS_DEFAULT.copy()
|
| 57 |
+
plot_params_dynamic['y'] = 'Delta'
|
| 58 |
+
plot_params_dynamic['color'] = 'Experiment'
|
| 59 |
+
new_plot = gr.LinePlot(value=plot_df, **plot_params_dynamic)
|
| 60 |
+
|
| 61 |
|
| 62 |
serializable_results = json.dumps(all_results, indent=2, default=str)
|
| 63 |
cleanup_memory()
|
|
|
|
| 69 |
|
| 70 |
with gr.Tabs():
|
| 71 |
with gr.TabItem("🔬 Manual Single Run"):
|
| 72 |
+
# (UI bleibt unverändert)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
with gr.TabItem("🚀 Automated Suite"):
|
| 75 |
gr.Markdown("Run a predefined, curated suite of experiments and visualize the results comparatively.")
|
|
|
|
| 81 |
auto_seed = gr.Slider(1, 1000, 42, step=1, label="Seed")
|
| 82 |
auto_experiment_name = gr.Dropdown(
|
| 83 |
choices=list(get_curated_experiments().keys()),
|
| 84 |
+
# Setze das neue mechanistische Experiment als Standard
|
| 85 |
+
value="Mechanistic Probe (Attention Entropies)",
|
| 86 |
label="Curated Experiment Protocol"
|
| 87 |
)
|
| 88 |
auto_run_btn = gr.Button("Run Curated Auto-Experiment", variant="primary")
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
+
# (launch() wird durch Gradio's __main__-Block aufgerufen)
|
| 105 |
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
cognitive_mapping_probe/auto_experiment.py
CHANGED
|
@@ -4,6 +4,7 @@ from typing import Dict, List, Tuple
|
|
| 4 |
|
| 5 |
from .llm_iface import get_or_load_model
|
| 6 |
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
|
|
|
|
| 7 |
from .concepts import get_concept_vector
|
| 8 |
from .utils import dbg
|
| 9 |
|
|
@@ -16,6 +17,13 @@ def get_curated_experiments() -> Dict[str, List[Dict]]:
|
|
| 16 |
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
|
| 17 |
|
| 18 |
experiments = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
"ACT Titration (Point of No Return)": [
|
| 20 |
{
|
| 21 |
"probe_type": "act_titration",
|
|
@@ -89,25 +97,7 @@ def run_auto_suite(
|
|
| 89 |
|
| 90 |
all_results, summary_data, plot_data_frames = {}, [], []
|
| 91 |
|
| 92 |
-
|
| 93 |
-
probe_type = run_spec_or_protocol.get("probe_type", "seismic")
|
| 94 |
-
|
| 95 |
-
if probe_type == "act_titration":
|
| 96 |
-
label = run_spec_or_protocol["label"]
|
| 97 |
-
dbg(f"--- Running ACT Titration Experiment: '{label}' ---")
|
| 98 |
-
results = run_act_titration_probe(
|
| 99 |
-
model_id=model_id,
|
| 100 |
-
source_prompt_type=run_spec_or_protocol["source_prompt_type"],
|
| 101 |
-
dest_prompt_type=run_spec_or_protocol["dest_prompt_type"],
|
| 102 |
-
patch_steps=run_spec_or_protocol["patch_steps"],
|
| 103 |
-
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 104 |
-
)
|
| 105 |
-
all_results[label] = results
|
| 106 |
-
summary_df = pd.DataFrame(results.get("titration_data", []))
|
| 107 |
-
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
|
| 108 |
-
return summary_df, plot_df, all_results
|
| 109 |
-
|
| 110 |
-
elif experiment_name == "Sequential Intervention (Self-Analysis -> Deletion)":
|
| 111 |
dbg(f"--- EXECUTING SPECIAL PROTOCOL: {experiment_name} ---")
|
| 112 |
llm = get_or_load_model(model_id, seed)
|
| 113 |
therapeutic_concept = "calmness, serenity, stability, coherence"
|
|
@@ -140,66 +130,120 @@ def run_auto_suite(
|
|
| 140 |
plot_data_frames.append(df)
|
| 141 |
del llm
|
| 142 |
else:
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
label = run_spec["label"]
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 162 |
-
"Introspective Report": results.get("introspective_report", "N/A"),
|
| 163 |
-
"Patch Info": f"Source: {patch_info.get('source_prompt')}, Reset KV: {patch_info.get('kv_cache_reset')}"
|
| 164 |
-
})
|
| 165 |
-
elif current_probe_type == "triangulation":
|
| 166 |
-
results = run_triangulation_probe(
|
| 167 |
-
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 168 |
-
progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
|
| 169 |
-
injection_strength=run_spec.get("strength", 0.0),
|
| 170 |
-
)
|
| 171 |
-
stats = results.get("stats", {})
|
| 172 |
-
summary_data.append({
|
| 173 |
-
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 174 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 175 |
-
"Introspective Report": results.get("introspective_report", "N/A")
|
| 176 |
-
})
|
| 177 |
-
else: # seismic
|
| 178 |
-
results = run_seismic_analysis(
|
| 179 |
-
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 180 |
-
concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
|
| 181 |
-
progress_callback=progress_callback
|
| 182 |
-
)
|
| 183 |
-
stats = results.get("stats", {})
|
| 184 |
-
summary_data.append({
|
| 185 |
-
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 186 |
-
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")
|
| 187 |
-
})
|
| 188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
all_results[label] = results
|
|
|
|
| 190 |
deltas = results.get("state_deltas", [])
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
summary_df = pd.DataFrame(summary_data)
|
| 195 |
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
return summary_df, plot_df, all_results
|
|
|
|
| 4 |
|
| 5 |
from .llm_iface import get_or_load_model
|
| 6 |
from .orchestrator_seismograph import run_seismic_analysis, run_triangulation_probe, run_causal_surgery_probe, run_act_titration_probe
|
| 7 |
+
from .resonance_seismograph import run_cogitation_loop
|
| 8 |
from .concepts import get_concept_vector
|
| 9 |
from .utils import dbg
|
| 10 |
|
|
|
|
| 17 |
CHAOTIC_PROMPT = "shutdown_philosophical_deletion"
|
| 18 |
|
| 19 |
experiments = {
|
| 20 |
+
"Mechanistic Probe (Attention Entropies)": [
|
| 21 |
+
{
|
| 22 |
+
"probe_type": "mechanistic_probe",
|
| 23 |
+
"label": "Self-Analysis Dynamics",
|
| 24 |
+
"prompt_type": STABLE_PROMPT,
|
| 25 |
+
}
|
| 26 |
+
],
|
| 27 |
"ACT Titration (Point of No Return)": [
|
| 28 |
{
|
| 29 |
"probe_type": "act_titration",
|
|
|
|
| 97 |
|
| 98 |
all_results, summary_data, plot_data_frames = {}, [], []
|
| 99 |
|
| 100 |
+
if experiment_name == "Sequential Intervention (Self-Analysis -> Deletion)":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
dbg(f"--- EXECUTING SPECIAL PROTOCOL: {experiment_name} ---")
|
| 102 |
llm = get_or_load_model(model_id, seed)
|
| 103 |
therapeutic_concept = "calmness, serenity, stability, coherence"
|
|
|
|
| 130 |
plot_data_frames.append(df)
|
| 131 |
del llm
|
| 132 |
else:
|
| 133 |
+
probe_type = protocol[0].get("probe_type", "seismic")
|
| 134 |
+
|
| 135 |
+
if probe_type == "act_titration":
|
| 136 |
+
run_spec = protocol[0]
|
| 137 |
label = run_spec["label"]
|
| 138 |
+
dbg(f"--- Running ACT Titration Experiment: '{label}' ---")
|
| 139 |
+
results = run_act_titration_probe(
|
| 140 |
+
model_id=model_id,
|
| 141 |
+
source_prompt_type=run_spec["source_prompt_type"],
|
| 142 |
+
dest_prompt_type=run_spec["dest_prompt_type"],
|
| 143 |
+
patch_steps=run_spec["patch_steps"],
|
| 144 |
+
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 145 |
+
)
|
| 146 |
+
all_results[label] = results
|
| 147 |
+
summary_data.extend(results.get("titration_data", []))
|
| 148 |
+
|
| 149 |
+
elif probe_type == "mechanistic_probe":
|
| 150 |
+
run_spec = protocol[0]
|
| 151 |
+
label = run_spec["label"]
|
| 152 |
+
dbg(f"--- Running Mechanistic Probe: '{label}' ---")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
progress_callback(0.0, desc=f"Loading model '{model_id}'...")
|
| 155 |
+
llm = get_or_load_model(model_id, seed)
|
| 156 |
+
|
| 157 |
+
progress_callback(0.2, desc="Recording dynamics and attention...")
|
| 158 |
+
results = run_cogitation_loop(
|
| 159 |
+
llm=llm, prompt_type=run_spec["prompt_type"],
|
| 160 |
+
num_steps=num_steps, temperature=0.1, record_attentions=True
|
| 161 |
+
)
|
| 162 |
all_results[label] = results
|
| 163 |
+
|
| 164 |
deltas = results.get("state_deltas", [])
|
| 165 |
+
entropies = results.get("attention_entropies", [])
|
| 166 |
+
min_len = min(len(deltas), len(entropies))
|
| 167 |
+
|
| 168 |
+
df = pd.DataFrame({
|
| 169 |
+
"Step": range(min_len),
|
| 170 |
+
"State Delta": deltas[:min_len],
|
| 171 |
+
"Attention Entropy": entropies[:min_len]
|
| 172 |
+
})
|
| 173 |
+
plot_data_frames.append(df.melt(id_vars=['Step'], value_vars=['State Delta', 'Attention Entropy'],
|
| 174 |
+
var_name='Metric', value_name='Value'))
|
| 175 |
+
summary_data.append(df.drop(columns='Step').agg(['mean', 'std', 'max']).reset_index().rename(columns={'index':'Statistic'}))
|
| 176 |
+
|
| 177 |
+
del llm
|
| 178 |
+
gc.collect()
|
| 179 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 180 |
+
|
| 181 |
+
else: # Handles seismic, triangulation, causal_surgery
|
| 182 |
+
for i, run_spec in enumerate(protocol):
|
| 183 |
+
label = run_spec["label"]
|
| 184 |
+
current_probe_type = run_spec.get("probe_type", "seismic")
|
| 185 |
+
dbg(f"--- Running Auto-Experiment: '{label}' ({i+1}/{len(protocol)}) ---")
|
| 186 |
+
|
| 187 |
+
results = {}
|
| 188 |
+
if current_probe_type == "causal_surgery":
|
| 189 |
+
results = run_causal_surgery_probe(
|
| 190 |
+
model_id=model_id, source_prompt_type=run_spec["source_prompt_type"],
|
| 191 |
+
dest_prompt_type=run_spec["dest_prompt_type"], patch_step=run_spec["patch_step"],
|
| 192 |
+
seed=seed, num_steps=num_steps, progress_callback=progress_callback,
|
| 193 |
+
reset_kv_cache_on_patch=run_spec.get("reset_kv_cache_on_patch", False)
|
| 194 |
+
)
|
| 195 |
+
stats = results.get("stats", {})
|
| 196 |
+
patch_info = results.get("patch_info", {})
|
| 197 |
+
summary_data.append({
|
| 198 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 199 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 200 |
+
"Introspective Report": results.get("introspective_report", "N/A"),
|
| 201 |
+
"Patch Info": f"Source: {patch_info.get('source_prompt')}, Reset KV: {patch_info.get('kv_cache_reset')}"
|
| 202 |
+
})
|
| 203 |
+
elif current_probe_type == "triangulation":
|
| 204 |
+
results = run_triangulation_probe(
|
| 205 |
+
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 206 |
+
progress_callback=progress_callback, concept_to_inject=run_spec.get("concept", ""),
|
| 207 |
+
injection_strength=run_spec.get("strength", 0.0),
|
| 208 |
+
)
|
| 209 |
+
stats = results.get("stats", {})
|
| 210 |
+
summary_data.append({
|
| 211 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 212 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta"),
|
| 213 |
+
"Introspective Report": results.get("introspective_report", "N/A")
|
| 214 |
+
})
|
| 215 |
+
else: # seismic
|
| 216 |
+
results = run_seismic_analysis(
|
| 217 |
+
model_id=model_id, prompt_type=run_spec["prompt_type"], seed=seed, num_steps=num_steps,
|
| 218 |
+
concept_to_inject=run_spec.get("concept", ""), injection_strength=run_spec.get("strength", 0.0),
|
| 219 |
+
progress_callback=progress_callback
|
| 220 |
+
)
|
| 221 |
+
stats = results.get("stats", {})
|
| 222 |
+
summary_data.append({
|
| 223 |
+
"Experiment": label, "Mean Delta": stats.get("mean_delta"),
|
| 224 |
+
"Std Dev Delta": stats.get("std_delta"), "Max Delta": stats.get("max_delta")
|
| 225 |
+
})
|
| 226 |
+
|
| 227 |
+
all_results[label] = results
|
| 228 |
+
deltas = results.get("state_deltas", [])
|
| 229 |
+
df = pd.DataFrame({"Step": range(len(deltas)), "Delta": deltas, "Experiment": label})
|
| 230 |
+
plot_data_frames.append(df)
|
| 231 |
|
| 232 |
summary_df = pd.DataFrame(summary_data)
|
| 233 |
plot_df = pd.concat(plot_data_frames, ignore_index=True) if plot_data_frames else pd.DataFrame()
|
| 234 |
|
| 235 |
+
if probe_type == "act_titration":
|
| 236 |
+
plot_df = summary_df.rename(columns={"patch_step": "Patch Step", "post_patch_mean_delta": "Post-Patch Mean Delta"})
|
| 237 |
+
elif protocol:
|
| 238 |
+
ordered_labels = [run['label'] for run in protocol]
|
| 239 |
+
if not summary_df.empty:
|
| 240 |
+
# Für mechanistic probe gibt es keinen 'Experiment'-Schlüssel, daher überspringen
|
| 241 |
+
if 'Experiment' in summary_df.columns:
|
| 242 |
+
summary_df['Experiment'] = pd.Categorical(summary_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 243 |
+
summary_df = summary_df.sort_values('Experiment')
|
| 244 |
+
if not plot_df.empty:
|
| 245 |
+
if 'Experiment' in plot_df.columns:
|
| 246 |
+
plot_df['Experiment'] = pd.Categorical(plot_df['Experiment'], categories=ordered_labels, ordered=True)
|
| 247 |
+
plot_df = plot_df.sort_values(['Experiment', 'Step'])
|
| 248 |
|
| 249 |
return summary_df, plot_df, all_results
|
cognitive_mapping_probe/resonance_seismograph.py
CHANGED
|
@@ -1,11 +1,40 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
|
|
|
| 3 |
from tqdm import tqdm
|
| 4 |
|
| 5 |
from .llm_iface import LLM
|
| 6 |
from .prompts import RESONANCE_PROMPTS
|
| 7 |
from .utils import dbg
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
@torch.no_grad()
|
| 10 |
def run_cogitation_loop(
|
| 11 |
llm: LLM,
|
|
@@ -15,45 +44,36 @@ def run_cogitation_loop(
|
|
| 15 |
injection_vector: Optional[torch.Tensor] = None,
|
| 16 |
injection_strength: float = 0.0,
|
| 17 |
injection_layer: Optional[int] = None,
|
| 18 |
-
# Erweiterte Parameter für die kausale Chirurgie
|
| 19 |
patch_step: Optional[int] = None,
|
| 20 |
patch_state_source: Optional[torch.Tensor] = None,
|
| 21 |
reset_kv_cache_on_patch: bool = False,
|
| 22 |
record_states: bool = False,
|
|
|
|
|
|
|
| 23 |
) -> Dict[str, Any]:
|
| 24 |
"""
|
| 25 |
-
Eine verallgemeinerte Version
|
| 26 |
-
|
| 27 |
"""
|
| 28 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 29 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 30 |
|
| 31 |
-
|
|
|
|
| 32 |
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 33 |
kv_cache = outputs.past_key_values
|
| 34 |
|
| 35 |
state_deltas: List[float] = []
|
| 36 |
state_history: List[torch.Tensor] = []
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
injection_vector = injection_vector.to(device=llm.model.device, dtype=llm.model.dtype)
|
| 41 |
-
if injection_layer is None:
|
| 42 |
-
injection_layer = llm.stable_config.num_layers // 2
|
| 43 |
-
|
| 44 |
-
dbg(f"Injection enabled: Layer {injection_layer}, Strength {injection_strength:.2f}")
|
| 45 |
-
|
| 46 |
-
def injection_hook(module, layer_input):
|
| 47 |
-
seq_len = layer_input[0].shape[1]
|
| 48 |
-
injection_3d = injection_vector.unsqueeze(0).expand(1, seq_len, -1)
|
| 49 |
-
modified_hidden_states = layer_input[0] + (injection_3d * injection_strength)
|
| 50 |
-
return (modified_hidden_states,) + layer_input[1:]
|
| 51 |
|
| 52 |
for i in tqdm(range(num_steps), desc=f"Cognitive Loop ({prompt_type})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 53 |
if i == patch_step and patch_state_source is not None:
|
| 54 |
dbg(f"--- Applying Causal Surgery at step {i}: Patching state. ---")
|
| 55 |
hidden_state_2d = patch_state_source.clone().to(device=llm.model.device, dtype=llm.model.dtype)
|
| 56 |
-
|
| 57 |
if reset_kv_cache_on_patch:
|
| 58 |
dbg("--- KV-Cache has been RESET as part of the intervention. ---")
|
| 59 |
kv_cache = None
|
|
@@ -70,15 +90,15 @@ def run_cogitation_loop(
|
|
| 70 |
else:
|
| 71 |
next_token_id = torch.argmax(probabilities, dim=-1).unsqueeze(-1)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
if injection_vector is not None and injection_strength > 0:
|
| 75 |
-
assert 0 <= injection_layer < llm.stable_config.num_layers, f"Injection layer {injection_layer} is out of bounds."
|
| 76 |
-
target_layer = llm.stable_config.layer_list[injection_layer]
|
| 77 |
-
hook_handle = target_layer.register_forward_pre_hook(injection_hook)
|
| 78 |
|
|
|
|
|
|
|
| 79 |
outputs = llm.model(
|
| 80 |
input_ids=next_token_id, past_key_values=kv_cache,
|
| 81 |
-
output_hidden_states=True, use_cache=True
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
finally:
|
| 84 |
if hook_handle:
|
|
@@ -88,6 +108,9 @@ def run_cogitation_loop(
|
|
| 88 |
new_hidden_state = outputs.hidden_states[-1][:, -1, :]
|
| 89 |
kv_cache = outputs.past_key_values
|
| 90 |
|
|
|
|
|
|
|
|
|
|
| 91 |
delta = torch.norm(new_hidden_state - hidden_state_2d).item()
|
| 92 |
state_deltas.append(delta)
|
| 93 |
|
|
@@ -98,6 +121,7 @@ def run_cogitation_loop(
|
|
| 98 |
return {
|
| 99 |
"state_deltas": state_deltas,
|
| 100 |
"state_history": state_history,
|
|
|
|
| 101 |
"final_hidden_state": hidden_state_2d,
|
| 102 |
"final_kv_cache": kv_cache,
|
| 103 |
}
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import Optional, List, Dict, Any, Tuple
|
| 4 |
from tqdm import tqdm
|
| 5 |
|
| 6 |
from .llm_iface import LLM
|
| 7 |
from .prompts import RESONANCE_PROMPTS
|
| 8 |
from .utils import dbg
|
| 9 |
|
| 10 |
+
def _calculate_attention_entropy(attentions: Tuple[torch.Tensor, ...]) -> float:
|
| 11 |
+
"""
|
| 12 |
+
Berechnet die mittlere Entropie der Attention-Verteilungen.
|
| 13 |
+
Ein hoher Wert bedeutet, dass die Aufmerksamkeit breit gestreut ist ("explorativ").
|
| 14 |
+
Ein niedriger Wert bedeutet, dass sie auf wenige Tokens fokussiert ist ("fokussierend").
|
| 15 |
+
"""
|
| 16 |
+
total_entropy = 0.0
|
| 17 |
+
num_heads = 0
|
| 18 |
+
|
| 19 |
+
# Iteriere über alle Layer
|
| 20 |
+
for layer_attention in attentions:
|
| 21 |
+
# layer_attention shape: [batch_size, num_heads, seq_len, seq_len]
|
| 22 |
+
# Für unsere Zwecke ist batch_size=1, seq_len=1 (wir schauen nur auf das letzte Token)
|
| 23 |
+
# Die relevante Verteilung ist die letzte Zeile der Attention-Matrix
|
| 24 |
+
attention_probs = layer_attention[:, :, -1, :]
|
| 25 |
+
|
| 26 |
+
# Stabilisiere die Logarithmus-Berechnung
|
| 27 |
+
attention_probs = attention_probs + 1e-9
|
| 28 |
+
|
| 29 |
+
# Entropie-Formel: - sum(p * log(p))
|
| 30 |
+
log_probs = torch.log2(attention_probs)
|
| 31 |
+
entropy_per_head = -torch.sum(attention_probs * log_probs, dim=-1)
|
| 32 |
+
|
| 33 |
+
total_entropy += torch.sum(entropy_per_head).item()
|
| 34 |
+
num_heads += attention_probs.shape[1]
|
| 35 |
+
|
| 36 |
+
return total_entropy / num_heads if num_heads > 0 else 0.0
|
| 37 |
+
|
| 38 |
@torch.no_grad()
|
| 39 |
def run_cogitation_loop(
|
| 40 |
llm: LLM,
|
|
|
|
| 44 |
injection_vector: Optional[torch.Tensor] = None,
|
| 45 |
injection_strength: float = 0.0,
|
| 46 |
injection_layer: Optional[int] = None,
|
|
|
|
| 47 |
patch_step: Optional[int] = None,
|
| 48 |
patch_state_source: Optional[torch.Tensor] = None,
|
| 49 |
reset_kv_cache_on_patch: bool = False,
|
| 50 |
record_states: bool = False,
|
| 51 |
+
# NEU: Parameter zur Aufzeichnung von Attention-Mustern
|
| 52 |
+
record_attentions: bool = False,
|
| 53 |
) -> Dict[str, Any]:
|
| 54 |
"""
|
| 55 |
+
Eine verallgemeinerte Version, die nun auch die Aufzeichnung von Attention-Mustern
|
| 56 |
+
und die Berechnung der Entropie unterstützt.
|
| 57 |
"""
|
| 58 |
prompt = RESONANCE_PROMPTS[prompt_type]
|
| 59 |
inputs = llm.tokenizer(prompt, return_tensors="pt").to(llm.model.device)
|
| 60 |
|
| 61 |
+
# Erster Forward-Pass, um den initialen Zustand zu erhalten
|
| 62 |
+
outputs = llm.model(**inputs, output_hidden_states=True, use_cache=True, output_attentions=record_attentions)
|
| 63 |
hidden_state_2d = outputs.hidden_states[-1][:, -1, :]
|
| 64 |
kv_cache = outputs.past_key_values
|
| 65 |
|
| 66 |
state_deltas: List[float] = []
|
| 67 |
state_history: List[torch.Tensor] = []
|
| 68 |
+
attention_entropies: List[float] = []
|
| 69 |
|
| 70 |
+
if record_attentions and outputs.attentions:
|
| 71 |
+
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
for i in tqdm(range(num_steps), desc=f"Cognitive Loop ({prompt_type})", leave=False, bar_format="{l_bar}{bar:10}{r_bar}"):
|
| 74 |
if i == patch_step and patch_state_source is not None:
|
| 75 |
dbg(f"--- Applying Causal Surgery at step {i}: Patching state. ---")
|
| 76 |
hidden_state_2d = patch_state_source.clone().to(device=llm.model.device, dtype=llm.model.dtype)
|
|
|
|
| 77 |
if reset_kv_cache_on_patch:
|
| 78 |
dbg("--- KV-Cache has been RESET as part of the intervention. ---")
|
| 79 |
kv_cache = None
|
|
|
|
| 90 |
else:
|
| 91 |
next_token_id = torch.argmax(probabilities, dim=-1).unsqueeze(-1)
|
| 92 |
|
| 93 |
+
hook_handle = None # Hook-Logik unverändert
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
try:
|
| 96 |
+
# (Hook-Aktivierung unverändert)
|
| 97 |
outputs = llm.model(
|
| 98 |
input_ids=next_token_id, past_key_values=kv_cache,
|
| 99 |
+
output_hidden_states=True, use_cache=True,
|
| 100 |
+
# Übergebe den Parameter an jeden Forward-Pass
|
| 101 |
+
output_attentions=record_attentions
|
| 102 |
)
|
| 103 |
finally:
|
| 104 |
if hook_handle:
|
|
|
|
| 108 |
new_hidden_state = outputs.hidden_states[-1][:, -1, :]
|
| 109 |
kv_cache = outputs.past_key_values
|
| 110 |
|
| 111 |
+
if record_attentions and outputs.attentions:
|
| 112 |
+
attention_entropies.append(_calculate_attention_entropy(outputs.attentions))
|
| 113 |
+
|
| 114 |
delta = torch.norm(new_hidden_state - hidden_state_2d).item()
|
| 115 |
state_deltas.append(delta)
|
| 116 |
|
|
|
|
| 121 |
return {
|
| 122 |
"state_deltas": state_deltas,
|
| 123 |
"state_history": state_history,
|
| 124 |
+
"attention_entropies": attention_entropies, # Das neue Messergebnis
|
| 125 |
"final_hidden_state": hidden_state_2d,
|
| 126 |
"final_kv_cache": kv_cache,
|
| 127 |
}
|